Proof of a Binomial expression summation












2














Let $x,y$ be probabilities and $n$ is some integer. Show that:



$displaystyle sum_{n_0=1}^n sum_{m=0}^{min(n_0-1,n-n_0-1)} binom{n_0-1}{m}binom{n-n_0-1}{m}x^m(1-x)^{n_0-m-1}y^m(1-y)^{n-n_0-m-1} = frac{1-(1-x-y)^{n-1}}{x+y} $



I reached this statement from some Markov chain related arguments, but am wondering if there is a mathematical way using binomial properties to prove this. There seems to be some nice symmetry and structure to this expression and I feel that this can be exploited.










share|cite|improve this question





























    2














    Let $x,y$ be probabilities and $n$ is some integer. Show that:



    $displaystyle sum_{n_0=1}^n sum_{m=0}^{min(n_0-1,n-n_0-1)} binom{n_0-1}{m}binom{n-n_0-1}{m}x^m(1-x)^{n_0-m-1}y^m(1-y)^{n-n_0-m-1} = frac{1-(1-x-y)^{n-1}}{x+y} $



    I reached this statement from some Markov chain related arguments, but am wondering if there is a mathematical way using binomial properties to prove this. There seems to be some nice symmetry and structure to this expression and I feel that this can be exploited.










    share|cite|improve this question



























      2












      2








      2


      1





      Let $x,y$ be probabilities and $n$ is some integer. Show that:



      $displaystyle sum_{n_0=1}^n sum_{m=0}^{min(n_0-1,n-n_0-1)} binom{n_0-1}{m}binom{n-n_0-1}{m}x^m(1-x)^{n_0-m-1}y^m(1-y)^{n-n_0-m-1} = frac{1-(1-x-y)^{n-1}}{x+y} $



      I reached this statement from some Markov chain related arguments, but am wondering if there is a mathematical way using binomial properties to prove this. There seems to be some nice symmetry and structure to this expression and I feel that this can be exploited.










      share|cite|improve this question















      Let $x,y$ be probabilities and $n$ is some integer. Show that:



      $displaystyle sum_{n_0=1}^n sum_{m=0}^{min(n_0-1,n-n_0-1)} binom{n_0-1}{m}binom{n-n_0-1}{m}x^m(1-x)^{n_0-m-1}y^m(1-y)^{n-n_0-m-1} = frac{1-(1-x-y)^{n-1}}{x+y} $



      I reached this statement from some Markov chain related arguments, but am wondering if there is a mathematical way using binomial properties to prove this. There seems to be some nice symmetry and structure to this expression and I feel that this can be exploited.







      binomial-coefficients binomial-distribution multinomial-coefficients






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 4 '18 at 10:03

























      asked Dec 4 '18 at 4:47









      Aditya Pradeep

      568




      568






















          1 Answer
          1






          active

          oldest

          votes


















          0














          This is an answer to cover the special case $x=y$. At first we adapt the indices somewhat for convenience only. Setting $n_0to N$ and $mto k$ OPs claim is
          begin{align*}
          &sum_{n=1}^{N-1}sum_{k=0}^{n-1}binom{n-1}{k}binom{N-n-1}{k}x^k(1-x)^{n-k-1}y^k(1-y)^{N-n-k-1}=frac{1-(1-(x+y))^{N-1}}{x+y}
          end{align*}

          where we set the upper limit of the leftmost sum to $N-1$ since the summand with $n=N$ is zero. We shift the index $n$ to start with $n=0$ and we substitute $N$ with $N+2$ which results in
          begin{align*}
          sum_{n=0}^{N}sum_{k=0}^{n}binom{n}{k}binom{N-n}{k}x^k(1-x)^{n-k}y^k(1-y)^{N-n-k}=frac{1-(1-(x+y))^{N+1}}{x+y}tag{1}
          end{align*}




          We show the special case $x=y$ of (1) is valid and prove
          begin{align*}
          color{blue}{sum_{n=0}^{N}sum_{k=0}^{n}binom{n}{k}binom{N-n}{k}x^{2k}(1-x)^{N-2k}=frac{1-(1-2x)^{N+1}}{2x}}tag{2}
          end{align*}




          We use the coefficient of operator $[x^k]$ to denote the coefficient of $x^k$ in a series. This way we can write for instance
          begin{align*}
          [x^k](1+x)^N=binom{N}{k}
          end{align*}




          We obtain
          begin{align*}
          color{blue}{sum_{n=0}^{N}}&color{blue}{sum_{k=0}^{n}binom{n}{k}binom{N-n}{k}x^{2k}(1-x)^{N-2k}}\
          &=(1-x)^Nsum_{n=0}^Nsum_{k=0}^nbinom{n}{k}[z^k](1+z)^{N-n}left(frac{x}{1-x}right)^{2k}tag{3}\
          &=(1-x)^N[z^0]sum_{n=0}^N(1+z)^{N-n}sum_{k=0}^nbinom{n}{k}left(frac{x}{1-x}right)^{2k}frac{1}{z^k}tag{4}\
          &=(1-x)^N[z^0]sum_{n=0}^N(1+z)^{N-n}left(1+left(frac{x}{1-x}right)^{2}frac{1}{z}right)^ntag{5}\
          &=(1-x)^N[z^0](1+z)^Nsum_{n=0}^Nleft(z(1+z)right)^{-n}left(z+left(frac{x}{1-x}right)^{2}right)^n\
          &=(1-x)^N[z^0](1+z)^Nfrac{left(frac{z+left(frac{x}{1-x}right)^2}{z(1+z)}right)^{N+1}-1}{frac{z+left(frac{x}{1-x}right)^2}{z(1+z)}-1}tag{6}\
          &=(1-x)^N[z^N]frac{left(z+left(frac{x}{1-x}right)^2right)^{N+1}-(z(1+z))^{N+1}}{left(z+left(frac{x}{1-x}right)^2right)-z(1+z)}\
          &=(1-x)^N[z^N]frac{left(z+left(frac{x}{1-x}right)^2right)^{N+1}}{left(frac{x}{1-x}right)^2-z^2}tag{7}\
          &=(1-x)^N[z^N]sum_{k=0}^{N+1}binom{N+1}{k}left(frac{x}{1-x}right)^{2k}z^{N+1-k}cdotfrac{1}{left(frac{x}{1-x}right)^2-z^2}tag{8}\
          &=(1-x)^Nsum_{k=1}^{N+1}binom{N+1}{k}left(frac{x}{1-x}right)^{2k-2}[z^{k-1}]cdotfrac{1}{1-left(frac{1-x}{x}right)^2z^2}\
          &=(1-x)^Nsum_{k=0}^{N}binom{N+1}{k+1}left(frac{x}{1-x}right)^{2k}[z^{k}]sum_{j=0}^inftyleft(frac{1-x}{x}right)^{2j}z^{2j}tag{9}\
          &=(1-x)^Nsum_{k=0}^{lfloor (N+1)/2rfloor}binom{N+1}{2k+1}left(frac{x}{1-x}right)^{2k}tag{10}\
          &=frac{(1-x)^{N+1}}{x}sum_{k=1}^{lfloor (N+1)/2rfloor}binom{N+1}{2k+1}left(frac{x}{1-x}right)^{2k+1}\
          &=frac{(1-x)^{N+1}}{2x}sum_{k=0}^{N+1}binom{N+1}{k}left(frac{x}{1-x}right)^{k}(1-(-1)^k)\
          &=frac{(1-x)^{N+1}}{2x}left(left(1+frac{x}{1-x}right)^{N+1}-left(1-frac{x}{1-x}right)^{N+1}right)tag{11}\
          &,,color{blue}{=frac{1-(1-2x)^{N+1}}{2x}}
          end{align*}

          and the claim (2) follows.




          Comment:




          • In (3) we apply the coefficient of operator to $binom{N-n}{k}$.


          • In (4) we use the linearity of the coefficient of operator and apply the rule $[x^{p-q}]A(x)=[x^p]x^qA(x)$.


          • In (5) we apply the binomial theorem.


          • In (6) we use the geometric series expansion.


          • In (7) we skip the term $(z(1+z))^{N+1}$ which does not contribute to $[z^N]$.


          • In (8) we apply the binomial theorem again.


          • In (9) we shift the index $k$ by one and do a geometric series expansion.


          • In (10) we have to select the coefficient of $z^k$ and since we have even powers $x^{2j}$ we replace $k$ with $2k$.


          • In (11) after applying the binomial theorem a third time we see the nice identities
            begin{align*}
            (1-x)left(1+frac{x}{1-x}right)&=1\
            (1-x)left(1-frac{x}{1-x}right)&=1-2x
            end{align*}







          share|cite|improve this answer























            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025140%2fproof-of-a-binomial-expression-summation%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0














            This is an answer to cover the special case $x=y$. At first we adapt the indices somewhat for convenience only. Setting $n_0to N$ and $mto k$ OPs claim is
            begin{align*}
            &sum_{n=1}^{N-1}sum_{k=0}^{n-1}binom{n-1}{k}binom{N-n-1}{k}x^k(1-x)^{n-k-1}y^k(1-y)^{N-n-k-1}=frac{1-(1-(x+y))^{N-1}}{x+y}
            end{align*}

            where we set the upper limit of the leftmost sum to $N-1$ since the summand with $n=N$ is zero. We shift the index $n$ to start with $n=0$ and we substitute $N$ with $N+2$ which results in
            begin{align*}
            sum_{n=0}^{N}sum_{k=0}^{n}binom{n}{k}binom{N-n}{k}x^k(1-x)^{n-k}y^k(1-y)^{N-n-k}=frac{1-(1-(x+y))^{N+1}}{x+y}tag{1}
            end{align*}




            We show the special case $x=y$ of (1) is valid and prove
            begin{align*}
            color{blue}{sum_{n=0}^{N}sum_{k=0}^{n}binom{n}{k}binom{N-n}{k}x^{2k}(1-x)^{N-2k}=frac{1-(1-2x)^{N+1}}{2x}}tag{2}
            end{align*}




            We use the coefficient of operator $[x^k]$ to denote the coefficient of $x^k$ in a series. This way we can write for instance
            begin{align*}
            [x^k](1+x)^N=binom{N}{k}
            end{align*}




            We obtain
            begin{align*}
            color{blue}{sum_{n=0}^{N}}&color{blue}{sum_{k=0}^{n}binom{n}{k}binom{N-n}{k}x^{2k}(1-x)^{N-2k}}\
            &=(1-x)^Nsum_{n=0}^Nsum_{k=0}^nbinom{n}{k}[z^k](1+z)^{N-n}left(frac{x}{1-x}right)^{2k}tag{3}\
            &=(1-x)^N[z^0]sum_{n=0}^N(1+z)^{N-n}sum_{k=0}^nbinom{n}{k}left(frac{x}{1-x}right)^{2k}frac{1}{z^k}tag{4}\
            &=(1-x)^N[z^0]sum_{n=0}^N(1+z)^{N-n}left(1+left(frac{x}{1-x}right)^{2}frac{1}{z}right)^ntag{5}\
            &=(1-x)^N[z^0](1+z)^Nsum_{n=0}^Nleft(z(1+z)right)^{-n}left(z+left(frac{x}{1-x}right)^{2}right)^n\
            &=(1-x)^N[z^0](1+z)^Nfrac{left(frac{z+left(frac{x}{1-x}right)^2}{z(1+z)}right)^{N+1}-1}{frac{z+left(frac{x}{1-x}right)^2}{z(1+z)}-1}tag{6}\
            &=(1-x)^N[z^N]frac{left(z+left(frac{x}{1-x}right)^2right)^{N+1}-(z(1+z))^{N+1}}{left(z+left(frac{x}{1-x}right)^2right)-z(1+z)}\
            &=(1-x)^N[z^N]frac{left(z+left(frac{x}{1-x}right)^2right)^{N+1}}{left(frac{x}{1-x}right)^2-z^2}tag{7}\
            &=(1-x)^N[z^N]sum_{k=0}^{N+1}binom{N+1}{k}left(frac{x}{1-x}right)^{2k}z^{N+1-k}cdotfrac{1}{left(frac{x}{1-x}right)^2-z^2}tag{8}\
            &=(1-x)^Nsum_{k=1}^{N+1}binom{N+1}{k}left(frac{x}{1-x}right)^{2k-2}[z^{k-1}]cdotfrac{1}{1-left(frac{1-x}{x}right)^2z^2}\
            &=(1-x)^Nsum_{k=0}^{N}binom{N+1}{k+1}left(frac{x}{1-x}right)^{2k}[z^{k}]sum_{j=0}^inftyleft(frac{1-x}{x}right)^{2j}z^{2j}tag{9}\
            &=(1-x)^Nsum_{k=0}^{lfloor (N+1)/2rfloor}binom{N+1}{2k+1}left(frac{x}{1-x}right)^{2k}tag{10}\
            &=frac{(1-x)^{N+1}}{x}sum_{k=1}^{lfloor (N+1)/2rfloor}binom{N+1}{2k+1}left(frac{x}{1-x}right)^{2k+1}\
            &=frac{(1-x)^{N+1}}{2x}sum_{k=0}^{N+1}binom{N+1}{k}left(frac{x}{1-x}right)^{k}(1-(-1)^k)\
            &=frac{(1-x)^{N+1}}{2x}left(left(1+frac{x}{1-x}right)^{N+1}-left(1-frac{x}{1-x}right)^{N+1}right)tag{11}\
            &,,color{blue}{=frac{1-(1-2x)^{N+1}}{2x}}
            end{align*}

            and the claim (2) follows.




            Comment:




            • In (3) we apply the coefficient of operator to $binom{N-n}{k}$.


            • In (4) we use the linearity of the coefficient of operator and apply the rule $[x^{p-q}]A(x)=[x^p]x^qA(x)$.


            • In (5) we apply the binomial theorem.


            • In (6) we use the geometric series expansion.


            • In (7) we skip the term $(z(1+z))^{N+1}$ which does not contribute to $[z^N]$.


            • In (8) we apply the binomial theorem again.


            • In (9) we shift the index $k$ by one and do a geometric series expansion.


            • In (10) we have to select the coefficient of $z^k$ and since we have even powers $x^{2j}$ we replace $k$ with $2k$.


            • In (11) after applying the binomial theorem a third time we see the nice identities
              begin{align*}
              (1-x)left(1+frac{x}{1-x}right)&=1\
              (1-x)left(1-frac{x}{1-x}right)&=1-2x
              end{align*}







            share|cite|improve this answer




























              0














              This is an answer to cover the special case $x=y$. At first we adapt the indices somewhat for convenience only. Setting $n_0to N$ and $mto k$ OPs claim is
              begin{align*}
              &sum_{n=1}^{N-1}sum_{k=0}^{n-1}binom{n-1}{k}binom{N-n-1}{k}x^k(1-x)^{n-k-1}y^k(1-y)^{N-n-k-1}=frac{1-(1-(x+y))^{N-1}}{x+y}
              end{align*}

              where we set the upper limit of the leftmost sum to $N-1$ since the summand with $n=N$ is zero. We shift the index $n$ to start with $n=0$ and we substitute $N$ with $N+2$ which results in
              begin{align*}
              sum_{n=0}^{N}sum_{k=0}^{n}binom{n}{k}binom{N-n}{k}x^k(1-x)^{n-k}y^k(1-y)^{N-n-k}=frac{1-(1-(x+y))^{N+1}}{x+y}tag{1}
              end{align*}




              We show the special case $x=y$ of (1) is valid and prove
              begin{align*}
              color{blue}{sum_{n=0}^{N}sum_{k=0}^{n}binom{n}{k}binom{N-n}{k}x^{2k}(1-x)^{N-2k}=frac{1-(1-2x)^{N+1}}{2x}}tag{2}
              end{align*}




              We use the coefficient of operator $[x^k]$ to denote the coefficient of $x^k$ in a series. This way we can write for instance
              begin{align*}
              [x^k](1+x)^N=binom{N}{k}
              end{align*}




              We obtain
              begin{align*}
              color{blue}{sum_{n=0}^{N}}&color{blue}{sum_{k=0}^{n}binom{n}{k}binom{N-n}{k}x^{2k}(1-x)^{N-2k}}\
              &=(1-x)^Nsum_{n=0}^Nsum_{k=0}^nbinom{n}{k}[z^k](1+z)^{N-n}left(frac{x}{1-x}right)^{2k}tag{3}\
              &=(1-x)^N[z^0]sum_{n=0}^N(1+z)^{N-n}sum_{k=0}^nbinom{n}{k}left(frac{x}{1-x}right)^{2k}frac{1}{z^k}tag{4}\
              &=(1-x)^N[z^0]sum_{n=0}^N(1+z)^{N-n}left(1+left(frac{x}{1-x}right)^{2}frac{1}{z}right)^ntag{5}\
              &=(1-x)^N[z^0](1+z)^Nsum_{n=0}^Nleft(z(1+z)right)^{-n}left(z+left(frac{x}{1-x}right)^{2}right)^n\
              &=(1-x)^N[z^0](1+z)^Nfrac{left(frac{z+left(frac{x}{1-x}right)^2}{z(1+z)}right)^{N+1}-1}{frac{z+left(frac{x}{1-x}right)^2}{z(1+z)}-1}tag{6}\
              &=(1-x)^N[z^N]frac{left(z+left(frac{x}{1-x}right)^2right)^{N+1}-(z(1+z))^{N+1}}{left(z+left(frac{x}{1-x}right)^2right)-z(1+z)}\
              &=(1-x)^N[z^N]frac{left(z+left(frac{x}{1-x}right)^2right)^{N+1}}{left(frac{x}{1-x}right)^2-z^2}tag{7}\
              &=(1-x)^N[z^N]sum_{k=0}^{N+1}binom{N+1}{k}left(frac{x}{1-x}right)^{2k}z^{N+1-k}cdotfrac{1}{left(frac{x}{1-x}right)^2-z^2}tag{8}\
              &=(1-x)^Nsum_{k=1}^{N+1}binom{N+1}{k}left(frac{x}{1-x}right)^{2k-2}[z^{k-1}]cdotfrac{1}{1-left(frac{1-x}{x}right)^2z^2}\
              &=(1-x)^Nsum_{k=0}^{N}binom{N+1}{k+1}left(frac{x}{1-x}right)^{2k}[z^{k}]sum_{j=0}^inftyleft(frac{1-x}{x}right)^{2j}z^{2j}tag{9}\
              &=(1-x)^Nsum_{k=0}^{lfloor (N+1)/2rfloor}binom{N+1}{2k+1}left(frac{x}{1-x}right)^{2k}tag{10}\
              &=frac{(1-x)^{N+1}}{x}sum_{k=1}^{lfloor (N+1)/2rfloor}binom{N+1}{2k+1}left(frac{x}{1-x}right)^{2k+1}\
              &=frac{(1-x)^{N+1}}{2x}sum_{k=0}^{N+1}binom{N+1}{k}left(frac{x}{1-x}right)^{k}(1-(-1)^k)\
              &=frac{(1-x)^{N+1}}{2x}left(left(1+frac{x}{1-x}right)^{N+1}-left(1-frac{x}{1-x}right)^{N+1}right)tag{11}\
              &,,color{blue}{=frac{1-(1-2x)^{N+1}}{2x}}
              end{align*}

              and the claim (2) follows.




              Comment:




              • In (3) we apply the coefficient of operator to $binom{N-n}{k}$.


              • In (4) we use the linearity of the coefficient of operator and apply the rule $[x^{p-q}]A(x)=[x^p]x^qA(x)$.


              • In (5) we apply the binomial theorem.


              • In (6) we use the geometric series expansion.


              • In (7) we skip the term $(z(1+z))^{N+1}$ which does not contribute to $[z^N]$.


              • In (8) we apply the binomial theorem again.


              • In (9) we shift the index $k$ by one and do a geometric series expansion.


              • In (10) we have to select the coefficient of $z^k$ and since we have even powers $x^{2j}$ we replace $k$ with $2k$.


              • In (11) after applying the binomial theorem a third time we see the nice identities
                begin{align*}
                (1-x)left(1+frac{x}{1-x}right)&=1\
                (1-x)left(1-frac{x}{1-x}right)&=1-2x
                end{align*}







              share|cite|improve this answer


























                0












                0








                0






                This is an answer to cover the special case $x=y$. At first we adapt the indices somewhat for convenience only. Setting $n_0to N$ and $mto k$ OPs claim is
                begin{align*}
                &sum_{n=1}^{N-1}sum_{k=0}^{n-1}binom{n-1}{k}binom{N-n-1}{k}x^k(1-x)^{n-k-1}y^k(1-y)^{N-n-k-1}=frac{1-(1-(x+y))^{N-1}}{x+y}
                end{align*}

                where we set the upper limit of the leftmost sum to $N-1$ since the summand with $n=N$ is zero. We shift the index $n$ to start with $n=0$ and we substitute $N$ with $N+2$ which results in
                begin{align*}
                sum_{n=0}^{N}sum_{k=0}^{n}binom{n}{k}binom{N-n}{k}x^k(1-x)^{n-k}y^k(1-y)^{N-n-k}=frac{1-(1-(x+y))^{N+1}}{x+y}tag{1}
                end{align*}




                We show the special case $x=y$ of (1) is valid and prove
                begin{align*}
                color{blue}{sum_{n=0}^{N}sum_{k=0}^{n}binom{n}{k}binom{N-n}{k}x^{2k}(1-x)^{N-2k}=frac{1-(1-2x)^{N+1}}{2x}}tag{2}
                end{align*}




                We use the coefficient of operator $[x^k]$ to denote the coefficient of $x^k$ in a series. This way we can write for instance
                begin{align*}
                [x^k](1+x)^N=binom{N}{k}
                end{align*}




                We obtain
                begin{align*}
                color{blue}{sum_{n=0}^{N}}&color{blue}{sum_{k=0}^{n}binom{n}{k}binom{N-n}{k}x^{2k}(1-x)^{N-2k}}\
                &=(1-x)^Nsum_{n=0}^Nsum_{k=0}^nbinom{n}{k}[z^k](1+z)^{N-n}left(frac{x}{1-x}right)^{2k}tag{3}\
                &=(1-x)^N[z^0]sum_{n=0}^N(1+z)^{N-n}sum_{k=0}^nbinom{n}{k}left(frac{x}{1-x}right)^{2k}frac{1}{z^k}tag{4}\
                &=(1-x)^N[z^0]sum_{n=0}^N(1+z)^{N-n}left(1+left(frac{x}{1-x}right)^{2}frac{1}{z}right)^ntag{5}\
                &=(1-x)^N[z^0](1+z)^Nsum_{n=0}^Nleft(z(1+z)right)^{-n}left(z+left(frac{x}{1-x}right)^{2}right)^n\
                &=(1-x)^N[z^0](1+z)^Nfrac{left(frac{z+left(frac{x}{1-x}right)^2}{z(1+z)}right)^{N+1}-1}{frac{z+left(frac{x}{1-x}right)^2}{z(1+z)}-1}tag{6}\
                &=(1-x)^N[z^N]frac{left(z+left(frac{x}{1-x}right)^2right)^{N+1}-(z(1+z))^{N+1}}{left(z+left(frac{x}{1-x}right)^2right)-z(1+z)}\
                &=(1-x)^N[z^N]frac{left(z+left(frac{x}{1-x}right)^2right)^{N+1}}{left(frac{x}{1-x}right)^2-z^2}tag{7}\
                &=(1-x)^N[z^N]sum_{k=0}^{N+1}binom{N+1}{k}left(frac{x}{1-x}right)^{2k}z^{N+1-k}cdotfrac{1}{left(frac{x}{1-x}right)^2-z^2}tag{8}\
                &=(1-x)^Nsum_{k=1}^{N+1}binom{N+1}{k}left(frac{x}{1-x}right)^{2k-2}[z^{k-1}]cdotfrac{1}{1-left(frac{1-x}{x}right)^2z^2}\
                &=(1-x)^Nsum_{k=0}^{N}binom{N+1}{k+1}left(frac{x}{1-x}right)^{2k}[z^{k}]sum_{j=0}^inftyleft(frac{1-x}{x}right)^{2j}z^{2j}tag{9}\
                &=(1-x)^Nsum_{k=0}^{lfloor (N+1)/2rfloor}binom{N+1}{2k+1}left(frac{x}{1-x}right)^{2k}tag{10}\
                &=frac{(1-x)^{N+1}}{x}sum_{k=1}^{lfloor (N+1)/2rfloor}binom{N+1}{2k+1}left(frac{x}{1-x}right)^{2k+1}\
                &=frac{(1-x)^{N+1}}{2x}sum_{k=0}^{N+1}binom{N+1}{k}left(frac{x}{1-x}right)^{k}(1-(-1)^k)\
                &=frac{(1-x)^{N+1}}{2x}left(left(1+frac{x}{1-x}right)^{N+1}-left(1-frac{x}{1-x}right)^{N+1}right)tag{11}\
                &,,color{blue}{=frac{1-(1-2x)^{N+1}}{2x}}
                end{align*}

                and the claim (2) follows.




                Comment:




                • In (3) we apply the coefficient of operator to $binom{N-n}{k}$.


                • In (4) we use the linearity of the coefficient of operator and apply the rule $[x^{p-q}]A(x)=[x^p]x^qA(x)$.


                • In (5) we apply the binomial theorem.


                • In (6) we use the geometric series expansion.


                • In (7) we skip the term $(z(1+z))^{N+1}$ which does not contribute to $[z^N]$.


                • In (8) we apply the binomial theorem again.


                • In (9) we shift the index $k$ by one and do a geometric series expansion.


                • In (10) we have to select the coefficient of $z^k$ and since we have even powers $x^{2j}$ we replace $k$ with $2k$.


                • In (11) after applying the binomial theorem a third time we see the nice identities
                  begin{align*}
                  (1-x)left(1+frac{x}{1-x}right)&=1\
                  (1-x)left(1-frac{x}{1-x}right)&=1-2x
                  end{align*}







                share|cite|improve this answer














                This is an answer to cover the special case $x=y$. At first we adapt the indices somewhat for convenience only. Setting $n_0to N$ and $mto k$ OPs claim is
                begin{align*}
                &sum_{n=1}^{N-1}sum_{k=0}^{n-1}binom{n-1}{k}binom{N-n-1}{k}x^k(1-x)^{n-k-1}y^k(1-y)^{N-n-k-1}=frac{1-(1-(x+y))^{N-1}}{x+y}
                end{align*}

                where we set the upper limit of the leftmost sum to $N-1$ since the summand with $n=N$ is zero. We shift the index $n$ to start with $n=0$ and we substitute $N$ with $N+2$ which results in
                begin{align*}
                sum_{n=0}^{N}sum_{k=0}^{n}binom{n}{k}binom{N-n}{k}x^k(1-x)^{n-k}y^k(1-y)^{N-n-k}=frac{1-(1-(x+y))^{N+1}}{x+y}tag{1}
                end{align*}




                We show the special case $x=y$ of (1) is valid and prove
                begin{align*}
                color{blue}{sum_{n=0}^{N}sum_{k=0}^{n}binom{n}{k}binom{N-n}{k}x^{2k}(1-x)^{N-2k}=frac{1-(1-2x)^{N+1}}{2x}}tag{2}
                end{align*}




                We use the coefficient of operator $[x^k]$ to denote the coefficient of $x^k$ in a series. This way we can write for instance
                begin{align*}
                [x^k](1+x)^N=binom{N}{k}
                end{align*}




                We obtain
                begin{align*}
                color{blue}{sum_{n=0}^{N}}&color{blue}{sum_{k=0}^{n}binom{n}{k}binom{N-n}{k}x^{2k}(1-x)^{N-2k}}\
                &=(1-x)^Nsum_{n=0}^Nsum_{k=0}^nbinom{n}{k}[z^k](1+z)^{N-n}left(frac{x}{1-x}right)^{2k}tag{3}\
                &=(1-x)^N[z^0]sum_{n=0}^N(1+z)^{N-n}sum_{k=0}^nbinom{n}{k}left(frac{x}{1-x}right)^{2k}frac{1}{z^k}tag{4}\
                &=(1-x)^N[z^0]sum_{n=0}^N(1+z)^{N-n}left(1+left(frac{x}{1-x}right)^{2}frac{1}{z}right)^ntag{5}\
                &=(1-x)^N[z^0](1+z)^Nsum_{n=0}^Nleft(z(1+z)right)^{-n}left(z+left(frac{x}{1-x}right)^{2}right)^n\
                &=(1-x)^N[z^0](1+z)^Nfrac{left(frac{z+left(frac{x}{1-x}right)^2}{z(1+z)}right)^{N+1}-1}{frac{z+left(frac{x}{1-x}right)^2}{z(1+z)}-1}tag{6}\
                &=(1-x)^N[z^N]frac{left(z+left(frac{x}{1-x}right)^2right)^{N+1}-(z(1+z))^{N+1}}{left(z+left(frac{x}{1-x}right)^2right)-z(1+z)}\
                &=(1-x)^N[z^N]frac{left(z+left(frac{x}{1-x}right)^2right)^{N+1}}{left(frac{x}{1-x}right)^2-z^2}tag{7}\
                &=(1-x)^N[z^N]sum_{k=0}^{N+1}binom{N+1}{k}left(frac{x}{1-x}right)^{2k}z^{N+1-k}cdotfrac{1}{left(frac{x}{1-x}right)^2-z^2}tag{8}\
                &=(1-x)^Nsum_{k=1}^{N+1}binom{N+1}{k}left(frac{x}{1-x}right)^{2k-2}[z^{k-1}]cdotfrac{1}{1-left(frac{1-x}{x}right)^2z^2}\
                &=(1-x)^Nsum_{k=0}^{N}binom{N+1}{k+1}left(frac{x}{1-x}right)^{2k}[z^{k}]sum_{j=0}^inftyleft(frac{1-x}{x}right)^{2j}z^{2j}tag{9}\
                &=(1-x)^Nsum_{k=0}^{lfloor (N+1)/2rfloor}binom{N+1}{2k+1}left(frac{x}{1-x}right)^{2k}tag{10}\
                &=frac{(1-x)^{N+1}}{x}sum_{k=1}^{lfloor (N+1)/2rfloor}binom{N+1}{2k+1}left(frac{x}{1-x}right)^{2k+1}\
                &=frac{(1-x)^{N+1}}{2x}sum_{k=0}^{N+1}binom{N+1}{k}left(frac{x}{1-x}right)^{k}(1-(-1)^k)\
                &=frac{(1-x)^{N+1}}{2x}left(left(1+frac{x}{1-x}right)^{N+1}-left(1-frac{x}{1-x}right)^{N+1}right)tag{11}\
                &,,color{blue}{=frac{1-(1-2x)^{N+1}}{2x}}
                end{align*}

                and the claim (2) follows.




                Comment:




                • In (3) we apply the coefficient of operator to $binom{N-n}{k}$.


                • In (4) we use the linearity of the coefficient of operator and apply the rule $[x^{p-q}]A(x)=[x^p]x^qA(x)$.


                • In (5) we apply the binomial theorem.


                • In (6) we use the geometric series expansion.


                • In (7) we skip the term $(z(1+z))^{N+1}$ which does not contribute to $[z^N]$.


                • In (8) we apply the binomial theorem again.


                • In (9) we shift the index $k$ by one and do a geometric series expansion.


                • In (10) we have to select the coefficient of $z^k$ and since we have even powers $x^{2j}$ we replace $k$ with $2k$.


                • In (11) after applying the binomial theorem a third time we see the nice identities
                  begin{align*}
                  (1-x)left(1+frac{x}{1-x}right)&=1\
                  (1-x)left(1-frac{x}{1-x}right)&=1-2x
                  end{align*}








                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited 1 hour ago

























                answered 2 days ago









                Markus Scheuer

                60.2k455144




                60.2k455144






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025140%2fproof-of-a-binomial-expression-summation%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    An IMO inspired problem

                    Management

                    Investment