Proof of a Binomial expression summation
Let $x,y$ be probabilities and $n$ is some integer. Show that:
$displaystyle sum_{n_0=1}^n sum_{m=0}^{min(n_0-1,n-n_0-1)} binom{n_0-1}{m}binom{n-n_0-1}{m}x^m(1-x)^{n_0-m-1}y^m(1-y)^{n-n_0-m-1} = frac{1-(1-x-y)^{n-1}}{x+y} $
I reached this statement from some Markov chain related arguments, but am wondering if there is a mathematical way using binomial properties to prove this. There seems to be some nice symmetry and structure to this expression and I feel that this can be exploited.
binomial-coefficients binomial-distribution multinomial-coefficients
add a comment |
Let $x,y$ be probabilities and $n$ is some integer. Show that:
$displaystyle sum_{n_0=1}^n sum_{m=0}^{min(n_0-1,n-n_0-1)} binom{n_0-1}{m}binom{n-n_0-1}{m}x^m(1-x)^{n_0-m-1}y^m(1-y)^{n-n_0-m-1} = frac{1-(1-x-y)^{n-1}}{x+y} $
I reached this statement from some Markov chain related arguments, but am wondering if there is a mathematical way using binomial properties to prove this. There seems to be some nice symmetry and structure to this expression and I feel that this can be exploited.
binomial-coefficients binomial-distribution multinomial-coefficients
add a comment |
Let $x,y$ be probabilities and $n$ is some integer. Show that:
$displaystyle sum_{n_0=1}^n sum_{m=0}^{min(n_0-1,n-n_0-1)} binom{n_0-1}{m}binom{n-n_0-1}{m}x^m(1-x)^{n_0-m-1}y^m(1-y)^{n-n_0-m-1} = frac{1-(1-x-y)^{n-1}}{x+y} $
I reached this statement from some Markov chain related arguments, but am wondering if there is a mathematical way using binomial properties to prove this. There seems to be some nice symmetry and structure to this expression and I feel that this can be exploited.
binomial-coefficients binomial-distribution multinomial-coefficients
Let $x,y$ be probabilities and $n$ is some integer. Show that:
$displaystyle sum_{n_0=1}^n sum_{m=0}^{min(n_0-1,n-n_0-1)} binom{n_0-1}{m}binom{n-n_0-1}{m}x^m(1-x)^{n_0-m-1}y^m(1-y)^{n-n_0-m-1} = frac{1-(1-x-y)^{n-1}}{x+y} $
I reached this statement from some Markov chain related arguments, but am wondering if there is a mathematical way using binomial properties to prove this. There seems to be some nice symmetry and structure to this expression and I feel that this can be exploited.
binomial-coefficients binomial-distribution multinomial-coefficients
binomial-coefficients binomial-distribution multinomial-coefficients
edited Dec 4 '18 at 10:03
asked Dec 4 '18 at 4:47
Aditya Pradeep
568
568
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
This is an answer to cover the special case $x=y$. At first we adapt the indices somewhat for convenience only. Setting $n_0to N$ and $mto k$ OPs claim is
begin{align*}
&sum_{n=1}^{N-1}sum_{k=0}^{n-1}binom{n-1}{k}binom{N-n-1}{k}x^k(1-x)^{n-k-1}y^k(1-y)^{N-n-k-1}=frac{1-(1-(x+y))^{N-1}}{x+y}
end{align*}
where we set the upper limit of the leftmost sum to $N-1$ since the summand with $n=N$ is zero. We shift the index $n$ to start with $n=0$ and we substitute $N$ with $N+2$ which results in
begin{align*}
sum_{n=0}^{N}sum_{k=0}^{n}binom{n}{k}binom{N-n}{k}x^k(1-x)^{n-k}y^k(1-y)^{N-n-k}=frac{1-(1-(x+y))^{N+1}}{x+y}tag{1}
end{align*}
We show the special case $x=y$ of (1) is valid and prove
begin{align*}
color{blue}{sum_{n=0}^{N}sum_{k=0}^{n}binom{n}{k}binom{N-n}{k}x^{2k}(1-x)^{N-2k}=frac{1-(1-2x)^{N+1}}{2x}}tag{2}
end{align*}
We use the coefficient of operator $[x^k]$ to denote the coefficient of $x^k$ in a series. This way we can write for instance
begin{align*}
[x^k](1+x)^N=binom{N}{k}
end{align*}
We obtain
begin{align*}
color{blue}{sum_{n=0}^{N}}&color{blue}{sum_{k=0}^{n}binom{n}{k}binom{N-n}{k}x^{2k}(1-x)^{N-2k}}\
&=(1-x)^Nsum_{n=0}^Nsum_{k=0}^nbinom{n}{k}[z^k](1+z)^{N-n}left(frac{x}{1-x}right)^{2k}tag{3}\
&=(1-x)^N[z^0]sum_{n=0}^N(1+z)^{N-n}sum_{k=0}^nbinom{n}{k}left(frac{x}{1-x}right)^{2k}frac{1}{z^k}tag{4}\
&=(1-x)^N[z^0]sum_{n=0}^N(1+z)^{N-n}left(1+left(frac{x}{1-x}right)^{2}frac{1}{z}right)^ntag{5}\
&=(1-x)^N[z^0](1+z)^Nsum_{n=0}^Nleft(z(1+z)right)^{-n}left(z+left(frac{x}{1-x}right)^{2}right)^n\
&=(1-x)^N[z^0](1+z)^Nfrac{left(frac{z+left(frac{x}{1-x}right)^2}{z(1+z)}right)^{N+1}-1}{frac{z+left(frac{x}{1-x}right)^2}{z(1+z)}-1}tag{6}\
&=(1-x)^N[z^N]frac{left(z+left(frac{x}{1-x}right)^2right)^{N+1}-(z(1+z))^{N+1}}{left(z+left(frac{x}{1-x}right)^2right)-z(1+z)}\
&=(1-x)^N[z^N]frac{left(z+left(frac{x}{1-x}right)^2right)^{N+1}}{left(frac{x}{1-x}right)^2-z^2}tag{7}\
&=(1-x)^N[z^N]sum_{k=0}^{N+1}binom{N+1}{k}left(frac{x}{1-x}right)^{2k}z^{N+1-k}cdotfrac{1}{left(frac{x}{1-x}right)^2-z^2}tag{8}\
&=(1-x)^Nsum_{k=1}^{N+1}binom{N+1}{k}left(frac{x}{1-x}right)^{2k-2}[z^{k-1}]cdotfrac{1}{1-left(frac{1-x}{x}right)^2z^2}\
&=(1-x)^Nsum_{k=0}^{N}binom{N+1}{k+1}left(frac{x}{1-x}right)^{2k}[z^{k}]sum_{j=0}^inftyleft(frac{1-x}{x}right)^{2j}z^{2j}tag{9}\
&=(1-x)^Nsum_{k=0}^{lfloor (N+1)/2rfloor}binom{N+1}{2k+1}left(frac{x}{1-x}right)^{2k}tag{10}\
&=frac{(1-x)^{N+1}}{x}sum_{k=1}^{lfloor (N+1)/2rfloor}binom{N+1}{2k+1}left(frac{x}{1-x}right)^{2k+1}\
&=frac{(1-x)^{N+1}}{2x}sum_{k=0}^{N+1}binom{N+1}{k}left(frac{x}{1-x}right)^{k}(1-(-1)^k)\
&=frac{(1-x)^{N+1}}{2x}left(left(1+frac{x}{1-x}right)^{N+1}-left(1-frac{x}{1-x}right)^{N+1}right)tag{11}\
&,,color{blue}{=frac{1-(1-2x)^{N+1}}{2x}}
end{align*}
and the claim (2) follows.
Comment:
In (3) we apply the coefficient of operator to $binom{N-n}{k}$.
In (4) we use the linearity of the coefficient of operator and apply the rule $[x^{p-q}]A(x)=[x^p]x^qA(x)$.
In (5) we apply the binomial theorem.
In (6) we use the geometric series expansion.
In (7) we skip the term $(z(1+z))^{N+1}$ which does not contribute to $[z^N]$.
In (8) we apply the binomial theorem again.
In (9) we shift the index $k$ by one and do a geometric series expansion.
In (10) we have to select the coefficient of $z^k$ and since we have even powers $x^{2j}$ we replace $k$ with $2k$.
In (11) after applying the binomial theorem a third time we see the nice identities
begin{align*}
(1-x)left(1+frac{x}{1-x}right)&=1\
(1-x)left(1-frac{x}{1-x}right)&=1-2x
end{align*}
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025140%2fproof-of-a-binomial-expression-summation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
This is an answer to cover the special case $x=y$. At first we adapt the indices somewhat for convenience only. Setting $n_0to N$ and $mto k$ OPs claim is
begin{align*}
&sum_{n=1}^{N-1}sum_{k=0}^{n-1}binom{n-1}{k}binom{N-n-1}{k}x^k(1-x)^{n-k-1}y^k(1-y)^{N-n-k-1}=frac{1-(1-(x+y))^{N-1}}{x+y}
end{align*}
where we set the upper limit of the leftmost sum to $N-1$ since the summand with $n=N$ is zero. We shift the index $n$ to start with $n=0$ and we substitute $N$ with $N+2$ which results in
begin{align*}
sum_{n=0}^{N}sum_{k=0}^{n}binom{n}{k}binom{N-n}{k}x^k(1-x)^{n-k}y^k(1-y)^{N-n-k}=frac{1-(1-(x+y))^{N+1}}{x+y}tag{1}
end{align*}
We show the special case $x=y$ of (1) is valid and prove
begin{align*}
color{blue}{sum_{n=0}^{N}sum_{k=0}^{n}binom{n}{k}binom{N-n}{k}x^{2k}(1-x)^{N-2k}=frac{1-(1-2x)^{N+1}}{2x}}tag{2}
end{align*}
We use the coefficient of operator $[x^k]$ to denote the coefficient of $x^k$ in a series. This way we can write for instance
begin{align*}
[x^k](1+x)^N=binom{N}{k}
end{align*}
We obtain
begin{align*}
color{blue}{sum_{n=0}^{N}}&color{blue}{sum_{k=0}^{n}binom{n}{k}binom{N-n}{k}x^{2k}(1-x)^{N-2k}}\
&=(1-x)^Nsum_{n=0}^Nsum_{k=0}^nbinom{n}{k}[z^k](1+z)^{N-n}left(frac{x}{1-x}right)^{2k}tag{3}\
&=(1-x)^N[z^0]sum_{n=0}^N(1+z)^{N-n}sum_{k=0}^nbinom{n}{k}left(frac{x}{1-x}right)^{2k}frac{1}{z^k}tag{4}\
&=(1-x)^N[z^0]sum_{n=0}^N(1+z)^{N-n}left(1+left(frac{x}{1-x}right)^{2}frac{1}{z}right)^ntag{5}\
&=(1-x)^N[z^0](1+z)^Nsum_{n=0}^Nleft(z(1+z)right)^{-n}left(z+left(frac{x}{1-x}right)^{2}right)^n\
&=(1-x)^N[z^0](1+z)^Nfrac{left(frac{z+left(frac{x}{1-x}right)^2}{z(1+z)}right)^{N+1}-1}{frac{z+left(frac{x}{1-x}right)^2}{z(1+z)}-1}tag{6}\
&=(1-x)^N[z^N]frac{left(z+left(frac{x}{1-x}right)^2right)^{N+1}-(z(1+z))^{N+1}}{left(z+left(frac{x}{1-x}right)^2right)-z(1+z)}\
&=(1-x)^N[z^N]frac{left(z+left(frac{x}{1-x}right)^2right)^{N+1}}{left(frac{x}{1-x}right)^2-z^2}tag{7}\
&=(1-x)^N[z^N]sum_{k=0}^{N+1}binom{N+1}{k}left(frac{x}{1-x}right)^{2k}z^{N+1-k}cdotfrac{1}{left(frac{x}{1-x}right)^2-z^2}tag{8}\
&=(1-x)^Nsum_{k=1}^{N+1}binom{N+1}{k}left(frac{x}{1-x}right)^{2k-2}[z^{k-1}]cdotfrac{1}{1-left(frac{1-x}{x}right)^2z^2}\
&=(1-x)^Nsum_{k=0}^{N}binom{N+1}{k+1}left(frac{x}{1-x}right)^{2k}[z^{k}]sum_{j=0}^inftyleft(frac{1-x}{x}right)^{2j}z^{2j}tag{9}\
&=(1-x)^Nsum_{k=0}^{lfloor (N+1)/2rfloor}binom{N+1}{2k+1}left(frac{x}{1-x}right)^{2k}tag{10}\
&=frac{(1-x)^{N+1}}{x}sum_{k=1}^{lfloor (N+1)/2rfloor}binom{N+1}{2k+1}left(frac{x}{1-x}right)^{2k+1}\
&=frac{(1-x)^{N+1}}{2x}sum_{k=0}^{N+1}binom{N+1}{k}left(frac{x}{1-x}right)^{k}(1-(-1)^k)\
&=frac{(1-x)^{N+1}}{2x}left(left(1+frac{x}{1-x}right)^{N+1}-left(1-frac{x}{1-x}right)^{N+1}right)tag{11}\
&,,color{blue}{=frac{1-(1-2x)^{N+1}}{2x}}
end{align*}
and the claim (2) follows.
Comment:
In (3) we apply the coefficient of operator to $binom{N-n}{k}$.
In (4) we use the linearity of the coefficient of operator and apply the rule $[x^{p-q}]A(x)=[x^p]x^qA(x)$.
In (5) we apply the binomial theorem.
In (6) we use the geometric series expansion.
In (7) we skip the term $(z(1+z))^{N+1}$ which does not contribute to $[z^N]$.
In (8) we apply the binomial theorem again.
In (9) we shift the index $k$ by one and do a geometric series expansion.
In (10) we have to select the coefficient of $z^k$ and since we have even powers $x^{2j}$ we replace $k$ with $2k$.
In (11) after applying the binomial theorem a third time we see the nice identities
begin{align*}
(1-x)left(1+frac{x}{1-x}right)&=1\
(1-x)left(1-frac{x}{1-x}right)&=1-2x
end{align*}
add a comment |
This is an answer to cover the special case $x=y$. At first we adapt the indices somewhat for convenience only. Setting $n_0to N$ and $mto k$ OPs claim is
begin{align*}
&sum_{n=1}^{N-1}sum_{k=0}^{n-1}binom{n-1}{k}binom{N-n-1}{k}x^k(1-x)^{n-k-1}y^k(1-y)^{N-n-k-1}=frac{1-(1-(x+y))^{N-1}}{x+y}
end{align*}
where we set the upper limit of the leftmost sum to $N-1$ since the summand with $n=N$ is zero. We shift the index $n$ to start with $n=0$ and we substitute $N$ with $N+2$ which results in
begin{align*}
sum_{n=0}^{N}sum_{k=0}^{n}binom{n}{k}binom{N-n}{k}x^k(1-x)^{n-k}y^k(1-y)^{N-n-k}=frac{1-(1-(x+y))^{N+1}}{x+y}tag{1}
end{align*}
We show the special case $x=y$ of (1) is valid and prove
begin{align*}
color{blue}{sum_{n=0}^{N}sum_{k=0}^{n}binom{n}{k}binom{N-n}{k}x^{2k}(1-x)^{N-2k}=frac{1-(1-2x)^{N+1}}{2x}}tag{2}
end{align*}
We use the coefficient of operator $[x^k]$ to denote the coefficient of $x^k$ in a series. This way we can write for instance
begin{align*}
[x^k](1+x)^N=binom{N}{k}
end{align*}
We obtain
begin{align*}
color{blue}{sum_{n=0}^{N}}&color{blue}{sum_{k=0}^{n}binom{n}{k}binom{N-n}{k}x^{2k}(1-x)^{N-2k}}\
&=(1-x)^Nsum_{n=0}^Nsum_{k=0}^nbinom{n}{k}[z^k](1+z)^{N-n}left(frac{x}{1-x}right)^{2k}tag{3}\
&=(1-x)^N[z^0]sum_{n=0}^N(1+z)^{N-n}sum_{k=0}^nbinom{n}{k}left(frac{x}{1-x}right)^{2k}frac{1}{z^k}tag{4}\
&=(1-x)^N[z^0]sum_{n=0}^N(1+z)^{N-n}left(1+left(frac{x}{1-x}right)^{2}frac{1}{z}right)^ntag{5}\
&=(1-x)^N[z^0](1+z)^Nsum_{n=0}^Nleft(z(1+z)right)^{-n}left(z+left(frac{x}{1-x}right)^{2}right)^n\
&=(1-x)^N[z^0](1+z)^Nfrac{left(frac{z+left(frac{x}{1-x}right)^2}{z(1+z)}right)^{N+1}-1}{frac{z+left(frac{x}{1-x}right)^2}{z(1+z)}-1}tag{6}\
&=(1-x)^N[z^N]frac{left(z+left(frac{x}{1-x}right)^2right)^{N+1}-(z(1+z))^{N+1}}{left(z+left(frac{x}{1-x}right)^2right)-z(1+z)}\
&=(1-x)^N[z^N]frac{left(z+left(frac{x}{1-x}right)^2right)^{N+1}}{left(frac{x}{1-x}right)^2-z^2}tag{7}\
&=(1-x)^N[z^N]sum_{k=0}^{N+1}binom{N+1}{k}left(frac{x}{1-x}right)^{2k}z^{N+1-k}cdotfrac{1}{left(frac{x}{1-x}right)^2-z^2}tag{8}\
&=(1-x)^Nsum_{k=1}^{N+1}binom{N+1}{k}left(frac{x}{1-x}right)^{2k-2}[z^{k-1}]cdotfrac{1}{1-left(frac{1-x}{x}right)^2z^2}\
&=(1-x)^Nsum_{k=0}^{N}binom{N+1}{k+1}left(frac{x}{1-x}right)^{2k}[z^{k}]sum_{j=0}^inftyleft(frac{1-x}{x}right)^{2j}z^{2j}tag{9}\
&=(1-x)^Nsum_{k=0}^{lfloor (N+1)/2rfloor}binom{N+1}{2k+1}left(frac{x}{1-x}right)^{2k}tag{10}\
&=frac{(1-x)^{N+1}}{x}sum_{k=1}^{lfloor (N+1)/2rfloor}binom{N+1}{2k+1}left(frac{x}{1-x}right)^{2k+1}\
&=frac{(1-x)^{N+1}}{2x}sum_{k=0}^{N+1}binom{N+1}{k}left(frac{x}{1-x}right)^{k}(1-(-1)^k)\
&=frac{(1-x)^{N+1}}{2x}left(left(1+frac{x}{1-x}right)^{N+1}-left(1-frac{x}{1-x}right)^{N+1}right)tag{11}\
&,,color{blue}{=frac{1-(1-2x)^{N+1}}{2x}}
end{align*}
and the claim (2) follows.
Comment:
In (3) we apply the coefficient of operator to $binom{N-n}{k}$.
In (4) we use the linearity of the coefficient of operator and apply the rule $[x^{p-q}]A(x)=[x^p]x^qA(x)$.
In (5) we apply the binomial theorem.
In (6) we use the geometric series expansion.
In (7) we skip the term $(z(1+z))^{N+1}$ which does not contribute to $[z^N]$.
In (8) we apply the binomial theorem again.
In (9) we shift the index $k$ by one and do a geometric series expansion.
In (10) we have to select the coefficient of $z^k$ and since we have even powers $x^{2j}$ we replace $k$ with $2k$.
In (11) after applying the binomial theorem a third time we see the nice identities
begin{align*}
(1-x)left(1+frac{x}{1-x}right)&=1\
(1-x)left(1-frac{x}{1-x}right)&=1-2x
end{align*}
add a comment |
This is an answer to cover the special case $x=y$. At first we adapt the indices somewhat for convenience only. Setting $n_0to N$ and $mto k$ OPs claim is
begin{align*}
&sum_{n=1}^{N-1}sum_{k=0}^{n-1}binom{n-1}{k}binom{N-n-1}{k}x^k(1-x)^{n-k-1}y^k(1-y)^{N-n-k-1}=frac{1-(1-(x+y))^{N-1}}{x+y}
end{align*}
where we set the upper limit of the leftmost sum to $N-1$ since the summand with $n=N$ is zero. We shift the index $n$ to start with $n=0$ and we substitute $N$ with $N+2$ which results in
begin{align*}
sum_{n=0}^{N}sum_{k=0}^{n}binom{n}{k}binom{N-n}{k}x^k(1-x)^{n-k}y^k(1-y)^{N-n-k}=frac{1-(1-(x+y))^{N+1}}{x+y}tag{1}
end{align*}
We show the special case $x=y$ of (1) is valid and prove
begin{align*}
color{blue}{sum_{n=0}^{N}sum_{k=0}^{n}binom{n}{k}binom{N-n}{k}x^{2k}(1-x)^{N-2k}=frac{1-(1-2x)^{N+1}}{2x}}tag{2}
end{align*}
We use the coefficient of operator $[x^k]$ to denote the coefficient of $x^k$ in a series. This way we can write for instance
begin{align*}
[x^k](1+x)^N=binom{N}{k}
end{align*}
We obtain
begin{align*}
color{blue}{sum_{n=0}^{N}}&color{blue}{sum_{k=0}^{n}binom{n}{k}binom{N-n}{k}x^{2k}(1-x)^{N-2k}}\
&=(1-x)^Nsum_{n=0}^Nsum_{k=0}^nbinom{n}{k}[z^k](1+z)^{N-n}left(frac{x}{1-x}right)^{2k}tag{3}\
&=(1-x)^N[z^0]sum_{n=0}^N(1+z)^{N-n}sum_{k=0}^nbinom{n}{k}left(frac{x}{1-x}right)^{2k}frac{1}{z^k}tag{4}\
&=(1-x)^N[z^0]sum_{n=0}^N(1+z)^{N-n}left(1+left(frac{x}{1-x}right)^{2}frac{1}{z}right)^ntag{5}\
&=(1-x)^N[z^0](1+z)^Nsum_{n=0}^Nleft(z(1+z)right)^{-n}left(z+left(frac{x}{1-x}right)^{2}right)^n\
&=(1-x)^N[z^0](1+z)^Nfrac{left(frac{z+left(frac{x}{1-x}right)^2}{z(1+z)}right)^{N+1}-1}{frac{z+left(frac{x}{1-x}right)^2}{z(1+z)}-1}tag{6}\
&=(1-x)^N[z^N]frac{left(z+left(frac{x}{1-x}right)^2right)^{N+1}-(z(1+z))^{N+1}}{left(z+left(frac{x}{1-x}right)^2right)-z(1+z)}\
&=(1-x)^N[z^N]frac{left(z+left(frac{x}{1-x}right)^2right)^{N+1}}{left(frac{x}{1-x}right)^2-z^2}tag{7}\
&=(1-x)^N[z^N]sum_{k=0}^{N+1}binom{N+1}{k}left(frac{x}{1-x}right)^{2k}z^{N+1-k}cdotfrac{1}{left(frac{x}{1-x}right)^2-z^2}tag{8}\
&=(1-x)^Nsum_{k=1}^{N+1}binom{N+1}{k}left(frac{x}{1-x}right)^{2k-2}[z^{k-1}]cdotfrac{1}{1-left(frac{1-x}{x}right)^2z^2}\
&=(1-x)^Nsum_{k=0}^{N}binom{N+1}{k+1}left(frac{x}{1-x}right)^{2k}[z^{k}]sum_{j=0}^inftyleft(frac{1-x}{x}right)^{2j}z^{2j}tag{9}\
&=(1-x)^Nsum_{k=0}^{lfloor (N+1)/2rfloor}binom{N+1}{2k+1}left(frac{x}{1-x}right)^{2k}tag{10}\
&=frac{(1-x)^{N+1}}{x}sum_{k=1}^{lfloor (N+1)/2rfloor}binom{N+1}{2k+1}left(frac{x}{1-x}right)^{2k+1}\
&=frac{(1-x)^{N+1}}{2x}sum_{k=0}^{N+1}binom{N+1}{k}left(frac{x}{1-x}right)^{k}(1-(-1)^k)\
&=frac{(1-x)^{N+1}}{2x}left(left(1+frac{x}{1-x}right)^{N+1}-left(1-frac{x}{1-x}right)^{N+1}right)tag{11}\
&,,color{blue}{=frac{1-(1-2x)^{N+1}}{2x}}
end{align*}
and the claim (2) follows.
Comment:
In (3) we apply the coefficient of operator to $binom{N-n}{k}$.
In (4) we use the linearity of the coefficient of operator and apply the rule $[x^{p-q}]A(x)=[x^p]x^qA(x)$.
In (5) we apply the binomial theorem.
In (6) we use the geometric series expansion.
In (7) we skip the term $(z(1+z))^{N+1}$ which does not contribute to $[z^N]$.
In (8) we apply the binomial theorem again.
In (9) we shift the index $k$ by one and do a geometric series expansion.
In (10) we have to select the coefficient of $z^k$ and since we have even powers $x^{2j}$ we replace $k$ with $2k$.
In (11) after applying the binomial theorem a third time we see the nice identities
begin{align*}
(1-x)left(1+frac{x}{1-x}right)&=1\
(1-x)left(1-frac{x}{1-x}right)&=1-2x
end{align*}
This is an answer to cover the special case $x=y$. At first we adapt the indices somewhat for convenience only. Setting $n_0to N$ and $mto k$ OPs claim is
begin{align*}
&sum_{n=1}^{N-1}sum_{k=0}^{n-1}binom{n-1}{k}binom{N-n-1}{k}x^k(1-x)^{n-k-1}y^k(1-y)^{N-n-k-1}=frac{1-(1-(x+y))^{N-1}}{x+y}
end{align*}
where we set the upper limit of the leftmost sum to $N-1$ since the summand with $n=N$ is zero. We shift the index $n$ to start with $n=0$ and we substitute $N$ with $N+2$ which results in
begin{align*}
sum_{n=0}^{N}sum_{k=0}^{n}binom{n}{k}binom{N-n}{k}x^k(1-x)^{n-k}y^k(1-y)^{N-n-k}=frac{1-(1-(x+y))^{N+1}}{x+y}tag{1}
end{align*}
We show the special case $x=y$ of (1) is valid and prove
begin{align*}
color{blue}{sum_{n=0}^{N}sum_{k=0}^{n}binom{n}{k}binom{N-n}{k}x^{2k}(1-x)^{N-2k}=frac{1-(1-2x)^{N+1}}{2x}}tag{2}
end{align*}
We use the coefficient of operator $[x^k]$ to denote the coefficient of $x^k$ in a series. This way we can write for instance
begin{align*}
[x^k](1+x)^N=binom{N}{k}
end{align*}
We obtain
begin{align*}
color{blue}{sum_{n=0}^{N}}&color{blue}{sum_{k=0}^{n}binom{n}{k}binom{N-n}{k}x^{2k}(1-x)^{N-2k}}\
&=(1-x)^Nsum_{n=0}^Nsum_{k=0}^nbinom{n}{k}[z^k](1+z)^{N-n}left(frac{x}{1-x}right)^{2k}tag{3}\
&=(1-x)^N[z^0]sum_{n=0}^N(1+z)^{N-n}sum_{k=0}^nbinom{n}{k}left(frac{x}{1-x}right)^{2k}frac{1}{z^k}tag{4}\
&=(1-x)^N[z^0]sum_{n=0}^N(1+z)^{N-n}left(1+left(frac{x}{1-x}right)^{2}frac{1}{z}right)^ntag{5}\
&=(1-x)^N[z^0](1+z)^Nsum_{n=0}^Nleft(z(1+z)right)^{-n}left(z+left(frac{x}{1-x}right)^{2}right)^n\
&=(1-x)^N[z^0](1+z)^Nfrac{left(frac{z+left(frac{x}{1-x}right)^2}{z(1+z)}right)^{N+1}-1}{frac{z+left(frac{x}{1-x}right)^2}{z(1+z)}-1}tag{6}\
&=(1-x)^N[z^N]frac{left(z+left(frac{x}{1-x}right)^2right)^{N+1}-(z(1+z))^{N+1}}{left(z+left(frac{x}{1-x}right)^2right)-z(1+z)}\
&=(1-x)^N[z^N]frac{left(z+left(frac{x}{1-x}right)^2right)^{N+1}}{left(frac{x}{1-x}right)^2-z^2}tag{7}\
&=(1-x)^N[z^N]sum_{k=0}^{N+1}binom{N+1}{k}left(frac{x}{1-x}right)^{2k}z^{N+1-k}cdotfrac{1}{left(frac{x}{1-x}right)^2-z^2}tag{8}\
&=(1-x)^Nsum_{k=1}^{N+1}binom{N+1}{k}left(frac{x}{1-x}right)^{2k-2}[z^{k-1}]cdotfrac{1}{1-left(frac{1-x}{x}right)^2z^2}\
&=(1-x)^Nsum_{k=0}^{N}binom{N+1}{k+1}left(frac{x}{1-x}right)^{2k}[z^{k}]sum_{j=0}^inftyleft(frac{1-x}{x}right)^{2j}z^{2j}tag{9}\
&=(1-x)^Nsum_{k=0}^{lfloor (N+1)/2rfloor}binom{N+1}{2k+1}left(frac{x}{1-x}right)^{2k}tag{10}\
&=frac{(1-x)^{N+1}}{x}sum_{k=1}^{lfloor (N+1)/2rfloor}binom{N+1}{2k+1}left(frac{x}{1-x}right)^{2k+1}\
&=frac{(1-x)^{N+1}}{2x}sum_{k=0}^{N+1}binom{N+1}{k}left(frac{x}{1-x}right)^{k}(1-(-1)^k)\
&=frac{(1-x)^{N+1}}{2x}left(left(1+frac{x}{1-x}right)^{N+1}-left(1-frac{x}{1-x}right)^{N+1}right)tag{11}\
&,,color{blue}{=frac{1-(1-2x)^{N+1}}{2x}}
end{align*}
and the claim (2) follows.
Comment:
In (3) we apply the coefficient of operator to $binom{N-n}{k}$.
In (4) we use the linearity of the coefficient of operator and apply the rule $[x^{p-q}]A(x)=[x^p]x^qA(x)$.
In (5) we apply the binomial theorem.
In (6) we use the geometric series expansion.
In (7) we skip the term $(z(1+z))^{N+1}$ which does not contribute to $[z^N]$.
In (8) we apply the binomial theorem again.
In (9) we shift the index $k$ by one and do a geometric series expansion.
In (10) we have to select the coefficient of $z^k$ and since we have even powers $x^{2j}$ we replace $k$ with $2k$.
In (11) after applying the binomial theorem a third time we see the nice identities
begin{align*}
(1-x)left(1+frac{x}{1-x}right)&=1\
(1-x)left(1-frac{x}{1-x}right)&=1-2x
end{align*}
edited 1 hour ago
answered 2 days ago
Markus Scheuer
60.2k455144
60.2k455144
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025140%2fproof-of-a-binomial-expression-summation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown