Deducing convergence from bounds on average
Assume I have a bound on the summatory function of the form
$$sum_{n leqslant x} |a_n|^2 leqslant x^alpha$$
Can I then deduce something about the convergence of
$$sum frac{a_n}{n^k} ?$$
I was expecting getting something using Cauchy-Schwarz inequality, but it is not enough since $x^alpha$ diverge and the sum of $n^{-2k}$ only converges, and does not compensate this $x^a$. Am I missing something?
analysis
add a comment |
Assume I have a bound on the summatory function of the form
$$sum_{n leqslant x} |a_n|^2 leqslant x^alpha$$
Can I then deduce something about the convergence of
$$sum frac{a_n}{n^k} ?$$
I was expecting getting something using Cauchy-Schwarz inequality, but it is not enough since $x^alpha$ diverge and the sum of $n^{-2k}$ only converges, and does not compensate this $x^a$. Am I missing something?
analysis
add a comment |
Assume I have a bound on the summatory function of the form
$$sum_{n leqslant x} |a_n|^2 leqslant x^alpha$$
Can I then deduce something about the convergence of
$$sum frac{a_n}{n^k} ?$$
I was expecting getting something using Cauchy-Schwarz inequality, but it is not enough since $x^alpha$ diverge and the sum of $n^{-2k}$ only converges, and does not compensate this $x^a$. Am I missing something?
analysis
Assume I have a bound on the summatory function of the form
$$sum_{n leqslant x} |a_n|^2 leqslant x^alpha$$
Can I then deduce something about the convergence of
$$sum frac{a_n}{n^k} ?$$
I was expecting getting something using Cauchy-Schwarz inequality, but it is not enough since $x^alpha$ diverge and the sum of $n^{-2k}$ only converges, and does not compensate this $x^a$. Am I missing something?
analysis
analysis
asked 19 hours ago
TheStudent
3086
3086
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
By the assumption, we have
$$
sum_{n= 2^j}^{2^{j+1}-1 }|a_n|^2 le C_1 2^{alpha j}
$$ for all $jge 0$.
Note that
$$
sum_{n= 2^j }^{2^{j+1}-1 }frac{|a_n|}{n^k}leq C_22^{-kj}sum_{n= 2^j }^{2^{j+1} -1}|a_n|leq C_32^{-(k-frac{1}{2})j}sqrt{sum_{n= 2^j }^{2^{j+1}-1 }|a_n|^2}le C_42^{-(k-frac{1}{2}-frac{alpha}{2})j}
$$ for all $jge 0$. Here, $(C_p)_{ 1le ple 4}$ is a set of constants depending only on $alpha$ and $k$. Thus, if $k>frac{alpha+1}{2}$, then the sum
$$
sum_{j=0}^inftysum_{n= 2^j }^{2^{j+1}-1 }frac{|a_n|}{n^k}
$$ converges absolutely. If $k le frac{alpha+1}{2}$, then $a_n = ccdot n^{frac{alpha-1}{2}}$ satisfies $sum_{jleq x} |a_j|^2 le x^alpha$ for sufficiently small $c>0$, but
$$
sum_n frac{a_n}{n^{k}} ge csum_n frac{1}{n}=infty.
$$ Hence, the bound $k>frac{alpha+1}{2}$ cannot be improved.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060411%2fdeducing-convergence-from-bounds-on-average%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
By the assumption, we have
$$
sum_{n= 2^j}^{2^{j+1}-1 }|a_n|^2 le C_1 2^{alpha j}
$$ for all $jge 0$.
Note that
$$
sum_{n= 2^j }^{2^{j+1}-1 }frac{|a_n|}{n^k}leq C_22^{-kj}sum_{n= 2^j }^{2^{j+1} -1}|a_n|leq C_32^{-(k-frac{1}{2})j}sqrt{sum_{n= 2^j }^{2^{j+1}-1 }|a_n|^2}le C_42^{-(k-frac{1}{2}-frac{alpha}{2})j}
$$ for all $jge 0$. Here, $(C_p)_{ 1le ple 4}$ is a set of constants depending only on $alpha$ and $k$. Thus, if $k>frac{alpha+1}{2}$, then the sum
$$
sum_{j=0}^inftysum_{n= 2^j }^{2^{j+1}-1 }frac{|a_n|}{n^k}
$$ converges absolutely. If $k le frac{alpha+1}{2}$, then $a_n = ccdot n^{frac{alpha-1}{2}}$ satisfies $sum_{jleq x} |a_j|^2 le x^alpha$ for sufficiently small $c>0$, but
$$
sum_n frac{a_n}{n^{k}} ge csum_n frac{1}{n}=infty.
$$ Hence, the bound $k>frac{alpha+1}{2}$ cannot be improved.
add a comment |
By the assumption, we have
$$
sum_{n= 2^j}^{2^{j+1}-1 }|a_n|^2 le C_1 2^{alpha j}
$$ for all $jge 0$.
Note that
$$
sum_{n= 2^j }^{2^{j+1}-1 }frac{|a_n|}{n^k}leq C_22^{-kj}sum_{n= 2^j }^{2^{j+1} -1}|a_n|leq C_32^{-(k-frac{1}{2})j}sqrt{sum_{n= 2^j }^{2^{j+1}-1 }|a_n|^2}le C_42^{-(k-frac{1}{2}-frac{alpha}{2})j}
$$ for all $jge 0$. Here, $(C_p)_{ 1le ple 4}$ is a set of constants depending only on $alpha$ and $k$. Thus, if $k>frac{alpha+1}{2}$, then the sum
$$
sum_{j=0}^inftysum_{n= 2^j }^{2^{j+1}-1 }frac{|a_n|}{n^k}
$$ converges absolutely. If $k le frac{alpha+1}{2}$, then $a_n = ccdot n^{frac{alpha-1}{2}}$ satisfies $sum_{jleq x} |a_j|^2 le x^alpha$ for sufficiently small $c>0$, but
$$
sum_n frac{a_n}{n^{k}} ge csum_n frac{1}{n}=infty.
$$ Hence, the bound $k>frac{alpha+1}{2}$ cannot be improved.
add a comment |
By the assumption, we have
$$
sum_{n= 2^j}^{2^{j+1}-1 }|a_n|^2 le C_1 2^{alpha j}
$$ for all $jge 0$.
Note that
$$
sum_{n= 2^j }^{2^{j+1}-1 }frac{|a_n|}{n^k}leq C_22^{-kj}sum_{n= 2^j }^{2^{j+1} -1}|a_n|leq C_32^{-(k-frac{1}{2})j}sqrt{sum_{n= 2^j }^{2^{j+1}-1 }|a_n|^2}le C_42^{-(k-frac{1}{2}-frac{alpha}{2})j}
$$ for all $jge 0$. Here, $(C_p)_{ 1le ple 4}$ is a set of constants depending only on $alpha$ and $k$. Thus, if $k>frac{alpha+1}{2}$, then the sum
$$
sum_{j=0}^inftysum_{n= 2^j }^{2^{j+1}-1 }frac{|a_n|}{n^k}
$$ converges absolutely. If $k le frac{alpha+1}{2}$, then $a_n = ccdot n^{frac{alpha-1}{2}}$ satisfies $sum_{jleq x} |a_j|^2 le x^alpha$ for sufficiently small $c>0$, but
$$
sum_n frac{a_n}{n^{k}} ge csum_n frac{1}{n}=infty.
$$ Hence, the bound $k>frac{alpha+1}{2}$ cannot be improved.
By the assumption, we have
$$
sum_{n= 2^j}^{2^{j+1}-1 }|a_n|^2 le C_1 2^{alpha j}
$$ for all $jge 0$.
Note that
$$
sum_{n= 2^j }^{2^{j+1}-1 }frac{|a_n|}{n^k}leq C_22^{-kj}sum_{n= 2^j }^{2^{j+1} -1}|a_n|leq C_32^{-(k-frac{1}{2})j}sqrt{sum_{n= 2^j }^{2^{j+1}-1 }|a_n|^2}le C_42^{-(k-frac{1}{2}-frac{alpha}{2})j}
$$ for all $jge 0$. Here, $(C_p)_{ 1le ple 4}$ is a set of constants depending only on $alpha$ and $k$. Thus, if $k>frac{alpha+1}{2}$, then the sum
$$
sum_{j=0}^inftysum_{n= 2^j }^{2^{j+1}-1 }frac{|a_n|}{n^k}
$$ converges absolutely. If $k le frac{alpha+1}{2}$, then $a_n = ccdot n^{frac{alpha-1}{2}}$ satisfies $sum_{jleq x} |a_j|^2 le x^alpha$ for sufficiently small $c>0$, but
$$
sum_n frac{a_n}{n^{k}} ge csum_n frac{1}{n}=infty.
$$ Hence, the bound $k>frac{alpha+1}{2}$ cannot be improved.
answered 18 hours ago
Song
5,225318
5,225318
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060411%2fdeducing-convergence-from-bounds-on-average%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown