$h(z)=|z-a|. |z-b|. |z-c|$, max value of $h$ is attained












3












$begingroup$


Let , $a,b,c$ be non-collinear points in complex plane, $Delta$ be the closed triangular region of the plane with vertices $a,b,c$. for $zinDelta$, let $$h(z)=|z-a|. |z-b|. |z-c|.$$



Then max value of $h$




  1. is not attained at any point of $Delta$


  2. is attained at an interior point of $Delta$


  3. is attained at the centre of gravity of $Delta$


  4. is attained at the boundary point of $Delta$



$4$ is correct due to Maximum Modulas Principle.Just confirm me please.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    $h$ is not holomorphic or harmonic, so the maximum modulus principle doesn't apply.
    $endgroup$
    – Daniel Fischer
    Jan 6 '14 at 14:44






  • 4




    $begingroup$
    well what if I apply MMP on $g(z)=(z-a)(z-b)(z-c)$ ?
    $endgroup$
    – Markov
    Jan 6 '14 at 14:47








  • 1




    $begingroup$
    Ah, then you have a correct argument.
    $endgroup$
    – Daniel Fischer
    Jan 6 '14 at 14:51
















3












$begingroup$


Let , $a,b,c$ be non-collinear points in complex plane, $Delta$ be the closed triangular region of the plane with vertices $a,b,c$. for $zinDelta$, let $$h(z)=|z-a|. |z-b|. |z-c|.$$



Then max value of $h$




  1. is not attained at any point of $Delta$


  2. is attained at an interior point of $Delta$


  3. is attained at the centre of gravity of $Delta$


  4. is attained at the boundary point of $Delta$



$4$ is correct due to Maximum Modulas Principle.Just confirm me please.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    $h$ is not holomorphic or harmonic, so the maximum modulus principle doesn't apply.
    $endgroup$
    – Daniel Fischer
    Jan 6 '14 at 14:44






  • 4




    $begingroup$
    well what if I apply MMP on $g(z)=(z-a)(z-b)(z-c)$ ?
    $endgroup$
    – Markov
    Jan 6 '14 at 14:47








  • 1




    $begingroup$
    Ah, then you have a correct argument.
    $endgroup$
    – Daniel Fischer
    Jan 6 '14 at 14:51














3












3








3


2



$begingroup$


Let , $a,b,c$ be non-collinear points in complex plane, $Delta$ be the closed triangular region of the plane with vertices $a,b,c$. for $zinDelta$, let $$h(z)=|z-a|. |z-b|. |z-c|.$$



Then max value of $h$




  1. is not attained at any point of $Delta$


  2. is attained at an interior point of $Delta$


  3. is attained at the centre of gravity of $Delta$


  4. is attained at the boundary point of $Delta$



$4$ is correct due to Maximum Modulas Principle.Just confirm me please.










share|cite|improve this question











$endgroup$




Let , $a,b,c$ be non-collinear points in complex plane, $Delta$ be the closed triangular region of the plane with vertices $a,b,c$. for $zinDelta$, let $$h(z)=|z-a|. |z-b|. |z-c|.$$



Then max value of $h$




  1. is not attained at any point of $Delta$


  2. is attained at an interior point of $Delta$


  3. is attained at the centre of gravity of $Delta$


  4. is attained at the boundary point of $Delta$



$4$ is correct due to Maximum Modulas Principle.Just confirm me please.







complex-analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Oct 12 '15 at 20:15









Empty

8,10252660




8,10252660










asked Jan 6 '14 at 14:43









MarkovMarkov

17.2k957178




17.2k957178








  • 1




    $begingroup$
    $h$ is not holomorphic or harmonic, so the maximum modulus principle doesn't apply.
    $endgroup$
    – Daniel Fischer
    Jan 6 '14 at 14:44






  • 4




    $begingroup$
    well what if I apply MMP on $g(z)=(z-a)(z-b)(z-c)$ ?
    $endgroup$
    – Markov
    Jan 6 '14 at 14:47








  • 1




    $begingroup$
    Ah, then you have a correct argument.
    $endgroup$
    – Daniel Fischer
    Jan 6 '14 at 14:51














  • 1




    $begingroup$
    $h$ is not holomorphic or harmonic, so the maximum modulus principle doesn't apply.
    $endgroup$
    – Daniel Fischer
    Jan 6 '14 at 14:44






  • 4




    $begingroup$
    well what if I apply MMP on $g(z)=(z-a)(z-b)(z-c)$ ?
    $endgroup$
    – Markov
    Jan 6 '14 at 14:47








  • 1




    $begingroup$
    Ah, then you have a correct argument.
    $endgroup$
    – Daniel Fischer
    Jan 6 '14 at 14:51








1




1




$begingroup$
$h$ is not holomorphic or harmonic, so the maximum modulus principle doesn't apply.
$endgroup$
– Daniel Fischer
Jan 6 '14 at 14:44




$begingroup$
$h$ is not holomorphic or harmonic, so the maximum modulus principle doesn't apply.
$endgroup$
– Daniel Fischer
Jan 6 '14 at 14:44




4




4




$begingroup$
well what if I apply MMP on $g(z)=(z-a)(z-b)(z-c)$ ?
$endgroup$
– Markov
Jan 6 '14 at 14:47






$begingroup$
well what if I apply MMP on $g(z)=(z-a)(z-b)(z-c)$ ?
$endgroup$
– Markov
Jan 6 '14 at 14:47






1




1




$begingroup$
Ah, then you have a correct argument.
$endgroup$
– Daniel Fischer
Jan 6 '14 at 14:51




$begingroup$
Ah, then you have a correct argument.
$endgroup$
– Daniel Fischer
Jan 6 '14 at 14:51










2 Answers
2






active

oldest

votes


















1












$begingroup$

Except your question, we can also answer to the maximum value of the function $h(x)$.



Let $f(z)=(z-a)(z-b)(z-c), ; forall zinDelta.$ Then $f$ agrees to Maximum Modulus Principle, hence $$|f(z)|leqmax{|f(z)|vert zinpartialDelta},; forall zin IntDelta$$ i.e. $max{h(z)vert zinDelta}=max{h(z)vert zinpartialDelta}$ where $h(z)=|f(z)|.$



Since $f(a)=f(b)=f(c)=0,$ the maximum occurs at $zin(a,b)cup(b,c)cup(c,a).$ Since $Delta$ is an equilateral triamgle, wlog let $zin(a,b).$ Then $$z=lambda a+(1-lambda )b,; lambdain(0,1).$$
On that case, $h(z)=lambda(1-lambda)|a-b|^2|lambda a+(1-lambda )b-c|.$ Let $|a-b|=|b-c|=|c-a|=p.$ Then $h(z)=lambda(1-lambda)p^2|lambda a+(1-lambda )b-c|.$



If you look at the triangle $Delta,$ from the fact that the height of the triangle is $frac{psqrt{3}}{2},$ using the Pythagorean Theorem, we see that $|z-c|=|lambda a+(1-lambda )b-c|=psqrt{lambda^2-lambda+1},$ so $h(z)=lambda(1-lambda)p^3sqrt{lambda^2-lambda+1}.$



We see that $max h(z)=max{lambda(1-lambda)p^3sqrt{lambda^2-lambda+1}|lambdain(0,1)}=frac{sqrt{3}}{2}p^3.$






share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    Yes, by the maximum principle applied to $(z-a)(z-b)(z-c)$, the maximum of $h$ is attained at a (not the) boundary point of the triangle.



    The specific triangular shape does not matter; the same holds for any domain.





    I'll add a similar, somewhat entertaining example: distribute $n$ points $z_1,dots,z_n$ uniformly along the unit circle. The maximum of the product $prod_{k=1}^n |z-z_k|$ over the disk $|z|le 1$ is equal to $2$ (and is attained at the boundary). It's not exactly intuitive that the maximum is independent of $n$.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      @@Post No Bulls) Can you please tell me how maximum value is $2$ in your last answer ?
      $endgroup$
      – Empty
      Oct 12 '15 at 20:13













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f629120%2fhz-z-a-z-b-z-c-max-value-of-h-is-attained%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Except your question, we can also answer to the maximum value of the function $h(x)$.



    Let $f(z)=(z-a)(z-b)(z-c), ; forall zinDelta.$ Then $f$ agrees to Maximum Modulus Principle, hence $$|f(z)|leqmax{|f(z)|vert zinpartialDelta},; forall zin IntDelta$$ i.e. $max{h(z)vert zinDelta}=max{h(z)vert zinpartialDelta}$ where $h(z)=|f(z)|.$



    Since $f(a)=f(b)=f(c)=0,$ the maximum occurs at $zin(a,b)cup(b,c)cup(c,a).$ Since $Delta$ is an equilateral triamgle, wlog let $zin(a,b).$ Then $$z=lambda a+(1-lambda )b,; lambdain(0,1).$$
    On that case, $h(z)=lambda(1-lambda)|a-b|^2|lambda a+(1-lambda )b-c|.$ Let $|a-b|=|b-c|=|c-a|=p.$ Then $h(z)=lambda(1-lambda)p^2|lambda a+(1-lambda )b-c|.$



    If you look at the triangle $Delta,$ from the fact that the height of the triangle is $frac{psqrt{3}}{2},$ using the Pythagorean Theorem, we see that $|z-c|=|lambda a+(1-lambda )b-c|=psqrt{lambda^2-lambda+1},$ so $h(z)=lambda(1-lambda)p^3sqrt{lambda^2-lambda+1}.$



    We see that $max h(z)=max{lambda(1-lambda)p^3sqrt{lambda^2-lambda+1}|lambdain(0,1)}=frac{sqrt{3}}{2}p^3.$






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      Except your question, we can also answer to the maximum value of the function $h(x)$.



      Let $f(z)=(z-a)(z-b)(z-c), ; forall zinDelta.$ Then $f$ agrees to Maximum Modulus Principle, hence $$|f(z)|leqmax{|f(z)|vert zinpartialDelta},; forall zin IntDelta$$ i.e. $max{h(z)vert zinDelta}=max{h(z)vert zinpartialDelta}$ where $h(z)=|f(z)|.$



      Since $f(a)=f(b)=f(c)=0,$ the maximum occurs at $zin(a,b)cup(b,c)cup(c,a).$ Since $Delta$ is an equilateral triamgle, wlog let $zin(a,b).$ Then $$z=lambda a+(1-lambda )b,; lambdain(0,1).$$
      On that case, $h(z)=lambda(1-lambda)|a-b|^2|lambda a+(1-lambda )b-c|.$ Let $|a-b|=|b-c|=|c-a|=p.$ Then $h(z)=lambda(1-lambda)p^2|lambda a+(1-lambda )b-c|.$



      If you look at the triangle $Delta,$ from the fact that the height of the triangle is $frac{psqrt{3}}{2},$ using the Pythagorean Theorem, we see that $|z-c|=|lambda a+(1-lambda )b-c|=psqrt{lambda^2-lambda+1},$ so $h(z)=lambda(1-lambda)p^3sqrt{lambda^2-lambda+1}.$



      We see that $max h(z)=max{lambda(1-lambda)p^3sqrt{lambda^2-lambda+1}|lambdain(0,1)}=frac{sqrt{3}}{2}p^3.$






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        Except your question, we can also answer to the maximum value of the function $h(x)$.



        Let $f(z)=(z-a)(z-b)(z-c), ; forall zinDelta.$ Then $f$ agrees to Maximum Modulus Principle, hence $$|f(z)|leqmax{|f(z)|vert zinpartialDelta},; forall zin IntDelta$$ i.e. $max{h(z)vert zinDelta}=max{h(z)vert zinpartialDelta}$ where $h(z)=|f(z)|.$



        Since $f(a)=f(b)=f(c)=0,$ the maximum occurs at $zin(a,b)cup(b,c)cup(c,a).$ Since $Delta$ is an equilateral triamgle, wlog let $zin(a,b).$ Then $$z=lambda a+(1-lambda )b,; lambdain(0,1).$$
        On that case, $h(z)=lambda(1-lambda)|a-b|^2|lambda a+(1-lambda )b-c|.$ Let $|a-b|=|b-c|=|c-a|=p.$ Then $h(z)=lambda(1-lambda)p^2|lambda a+(1-lambda )b-c|.$



        If you look at the triangle $Delta,$ from the fact that the height of the triangle is $frac{psqrt{3}}{2},$ using the Pythagorean Theorem, we see that $|z-c|=|lambda a+(1-lambda )b-c|=psqrt{lambda^2-lambda+1},$ so $h(z)=lambda(1-lambda)p^3sqrt{lambda^2-lambda+1}.$



        We see that $max h(z)=max{lambda(1-lambda)p^3sqrt{lambda^2-lambda+1}|lambdain(0,1)}=frac{sqrt{3}}{2}p^3.$






        share|cite|improve this answer









        $endgroup$



        Except your question, we can also answer to the maximum value of the function $h(x)$.



        Let $f(z)=(z-a)(z-b)(z-c), ; forall zinDelta.$ Then $f$ agrees to Maximum Modulus Principle, hence $$|f(z)|leqmax{|f(z)|vert zinpartialDelta},; forall zin IntDelta$$ i.e. $max{h(z)vert zinDelta}=max{h(z)vert zinpartialDelta}$ where $h(z)=|f(z)|.$



        Since $f(a)=f(b)=f(c)=0,$ the maximum occurs at $zin(a,b)cup(b,c)cup(c,a).$ Since $Delta$ is an equilateral triamgle, wlog let $zin(a,b).$ Then $$z=lambda a+(1-lambda )b,; lambdain(0,1).$$
        On that case, $h(z)=lambda(1-lambda)|a-b|^2|lambda a+(1-lambda )b-c|.$ Let $|a-b|=|b-c|=|c-a|=p.$ Then $h(z)=lambda(1-lambda)p^2|lambda a+(1-lambda )b-c|.$



        If you look at the triangle $Delta,$ from the fact that the height of the triangle is $frac{psqrt{3}}{2},$ using the Pythagorean Theorem, we see that $|z-c|=|lambda a+(1-lambda )b-c|=psqrt{lambda^2-lambda+1},$ so $h(z)=lambda(1-lambda)p^3sqrt{lambda^2-lambda+1}.$



        We see that $max h(z)=max{lambda(1-lambda)p^3sqrt{lambda^2-lambda+1}|lambdain(0,1)}=frac{sqrt{3}}{2}p^3.$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 7 at 15:55









        EminEmin

        1,36021330




        1,36021330























            2












            $begingroup$

            Yes, by the maximum principle applied to $(z-a)(z-b)(z-c)$, the maximum of $h$ is attained at a (not the) boundary point of the triangle.



            The specific triangular shape does not matter; the same holds for any domain.





            I'll add a similar, somewhat entertaining example: distribute $n$ points $z_1,dots,z_n$ uniformly along the unit circle. The maximum of the product $prod_{k=1}^n |z-z_k|$ over the disk $|z|le 1$ is equal to $2$ (and is attained at the boundary). It's not exactly intuitive that the maximum is independent of $n$.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              @@Post No Bulls) Can you please tell me how maximum value is $2$ in your last answer ?
              $endgroup$
              – Empty
              Oct 12 '15 at 20:13


















            2












            $begingroup$

            Yes, by the maximum principle applied to $(z-a)(z-b)(z-c)$, the maximum of $h$ is attained at a (not the) boundary point of the triangle.



            The specific triangular shape does not matter; the same holds for any domain.





            I'll add a similar, somewhat entertaining example: distribute $n$ points $z_1,dots,z_n$ uniformly along the unit circle. The maximum of the product $prod_{k=1}^n |z-z_k|$ over the disk $|z|le 1$ is equal to $2$ (and is attained at the boundary). It's not exactly intuitive that the maximum is independent of $n$.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              @@Post No Bulls) Can you please tell me how maximum value is $2$ in your last answer ?
              $endgroup$
              – Empty
              Oct 12 '15 at 20:13
















            2












            2








            2





            $begingroup$

            Yes, by the maximum principle applied to $(z-a)(z-b)(z-c)$, the maximum of $h$ is attained at a (not the) boundary point of the triangle.



            The specific triangular shape does not matter; the same holds for any domain.





            I'll add a similar, somewhat entertaining example: distribute $n$ points $z_1,dots,z_n$ uniformly along the unit circle. The maximum of the product $prod_{k=1}^n |z-z_k|$ over the disk $|z|le 1$ is equal to $2$ (and is attained at the boundary). It's not exactly intuitive that the maximum is independent of $n$.






            share|cite|improve this answer









            $endgroup$



            Yes, by the maximum principle applied to $(z-a)(z-b)(z-c)$, the maximum of $h$ is attained at a (not the) boundary point of the triangle.



            The specific triangular shape does not matter; the same holds for any domain.





            I'll add a similar, somewhat entertaining example: distribute $n$ points $z_1,dots,z_n$ uniformly along the unit circle. The maximum of the product $prod_{k=1}^n |z-z_k|$ over the disk $|z|le 1$ is equal to $2$ (and is attained at the boundary). It's not exactly intuitive that the maximum is independent of $n$.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 6 '14 at 15:58









            Post No BullsPost No Bulls

            6,42321682




            6,42321682












            • $begingroup$
              @@Post No Bulls) Can you please tell me how maximum value is $2$ in your last answer ?
              $endgroup$
              – Empty
              Oct 12 '15 at 20:13




















            • $begingroup$
              @@Post No Bulls) Can you please tell me how maximum value is $2$ in your last answer ?
              $endgroup$
              – Empty
              Oct 12 '15 at 20:13


















            $begingroup$
            @@Post No Bulls) Can you please tell me how maximum value is $2$ in your last answer ?
            $endgroup$
            – Empty
            Oct 12 '15 at 20:13






            $begingroup$
            @@Post No Bulls) Can you please tell me how maximum value is $2$ in your last answer ?
            $endgroup$
            – Empty
            Oct 12 '15 at 20:13




















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f629120%2fhz-z-a-z-b-z-c-max-value-of-h-is-attained%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            1300-talet

            1300-talet

            Display a custom attribute below product name in the front-end Magento 1.9.3.8