Show an inequality












1












$begingroup$


Show that on the Hilbert space: $$xbot y $$ if and only if $$ Vert x + CyVert ge Vert x Vert,$$
$forall Cin mathbb R.$










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Consider $|x+Cy|^2-|x|^2$ for $C$ near zero.
    $endgroup$
    – Lord Shark the Unknown
    Jan 7 at 17:02
















1












$begingroup$


Show that on the Hilbert space: $$xbot y $$ if and only if $$ Vert x + CyVert ge Vert x Vert,$$
$forall Cin mathbb R.$










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Consider $|x+Cy|^2-|x|^2$ for $C$ near zero.
    $endgroup$
    – Lord Shark the Unknown
    Jan 7 at 17:02














1












1








1





$begingroup$


Show that on the Hilbert space: $$xbot y $$ if and only if $$ Vert x + CyVert ge Vert x Vert,$$
$forall Cin mathbb R.$










share|cite|improve this question









$endgroup$




Show that on the Hilbert space: $$xbot y $$ if and only if $$ Vert x + CyVert ge Vert x Vert,$$
$forall Cin mathbb R.$







inequality hilbert-spaces






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 7 at 16:59









PhilipPhilip

826




826








  • 1




    $begingroup$
    Consider $|x+Cy|^2-|x|^2$ for $C$ near zero.
    $endgroup$
    – Lord Shark the Unknown
    Jan 7 at 17:02














  • 1




    $begingroup$
    Consider $|x+Cy|^2-|x|^2$ for $C$ near zero.
    $endgroup$
    – Lord Shark the Unknown
    Jan 7 at 17:02








1




1




$begingroup$
Consider $|x+Cy|^2-|x|^2$ for $C$ near zero.
$endgroup$
– Lord Shark the Unknown
Jan 7 at 17:02




$begingroup$
Consider $|x+Cy|^2-|x|^2$ for $C$ near zero.
$endgroup$
– Lord Shark the Unknown
Jan 7 at 17:02










2 Answers
2






active

oldest

votes


















3












$begingroup$

Observe that, for given $Cin mathbb{R},$
$$|x+Cy|^2=left<x+Cy,x+Cyright>=|x|^2+C^2|y|^2geq |x|^2 $$
due to the orthogonality ($xperp y implies left<x,y right>=0.$)



Take the square root, then you get
$$|x+Cy|geq |x|$$






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    $||x+Cy||^{2}=||x||^{2}+2Clangle x,yrangle+C^{2}||y||^{2}$



    $||x+Cy||^{2}ge ||x||^{2} iff 2Clangle x,yrangle+C^{2}||y||^{2}ge 0$



    This associated equation is an quation of second degree has two real roots $C_{1}=0$, $C_{2}=frac{2langle x,yrangle}{||y||^{2}}$. So the inequality is always true for all $Cinmathbb{R} iff C_{1}=C_{2} iff xperp y$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065224%2fshow-an-inequality%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3












      $begingroup$

      Observe that, for given $Cin mathbb{R},$
      $$|x+Cy|^2=left<x+Cy,x+Cyright>=|x|^2+C^2|y|^2geq |x|^2 $$
      due to the orthogonality ($xperp y implies left<x,y right>=0.$)



      Take the square root, then you get
      $$|x+Cy|geq |x|$$






      share|cite|improve this answer









      $endgroup$


















        3












        $begingroup$

        Observe that, for given $Cin mathbb{R},$
        $$|x+Cy|^2=left<x+Cy,x+Cyright>=|x|^2+C^2|y|^2geq |x|^2 $$
        due to the orthogonality ($xperp y implies left<x,y right>=0.$)



        Take the square root, then you get
        $$|x+Cy|geq |x|$$






        share|cite|improve this answer









        $endgroup$
















          3












          3








          3





          $begingroup$

          Observe that, for given $Cin mathbb{R},$
          $$|x+Cy|^2=left<x+Cy,x+Cyright>=|x|^2+C^2|y|^2geq |x|^2 $$
          due to the orthogonality ($xperp y implies left<x,y right>=0.$)



          Take the square root, then you get
          $$|x+Cy|geq |x|$$






          share|cite|improve this answer









          $endgroup$



          Observe that, for given $Cin mathbb{R},$
          $$|x+Cy|^2=left<x+Cy,x+Cyright>=|x|^2+C^2|y|^2geq |x|^2 $$
          due to the orthogonality ($xperp y implies left<x,y right>=0.$)



          Take the square root, then you get
          $$|x+Cy|geq |x|$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 7 at 17:10









          LeBLeB

          1,080317




          1,080317























              1












              $begingroup$

              $||x+Cy||^{2}=||x||^{2}+2Clangle x,yrangle+C^{2}||y||^{2}$



              $||x+Cy||^{2}ge ||x||^{2} iff 2Clangle x,yrangle+C^{2}||y||^{2}ge 0$



              This associated equation is an quation of second degree has two real roots $C_{1}=0$, $C_{2}=frac{2langle x,yrangle}{||y||^{2}}$. So the inequality is always true for all $Cinmathbb{R} iff C_{1}=C_{2} iff xperp y$






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                $||x+Cy||^{2}=||x||^{2}+2Clangle x,yrangle+C^{2}||y||^{2}$



                $||x+Cy||^{2}ge ||x||^{2} iff 2Clangle x,yrangle+C^{2}||y||^{2}ge 0$



                This associated equation is an quation of second degree has two real roots $C_{1}=0$, $C_{2}=frac{2langle x,yrangle}{||y||^{2}}$. So the inequality is always true for all $Cinmathbb{R} iff C_{1}=C_{2} iff xperp y$






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  $||x+Cy||^{2}=||x||^{2}+2Clangle x,yrangle+C^{2}||y||^{2}$



                  $||x+Cy||^{2}ge ||x||^{2} iff 2Clangle x,yrangle+C^{2}||y||^{2}ge 0$



                  This associated equation is an quation of second degree has two real roots $C_{1}=0$, $C_{2}=frac{2langle x,yrangle}{||y||^{2}}$. So the inequality is always true for all $Cinmathbb{R} iff C_{1}=C_{2} iff xperp y$






                  share|cite|improve this answer









                  $endgroup$



                  $||x+Cy||^{2}=||x||^{2}+2Clangle x,yrangle+C^{2}||y||^{2}$



                  $||x+Cy||^{2}ge ||x||^{2} iff 2Clangle x,yrangle+C^{2}||y||^{2}ge 0$



                  This associated equation is an quation of second degree has two real roots $C_{1}=0$, $C_{2}=frac{2langle x,yrangle}{||y||^{2}}$. So the inequality is always true for all $Cinmathbb{R} iff C_{1}=C_{2} iff xperp y$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 7 at 17:37









                  ecrinecrin

                  3547




                  3547






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065224%2fshow-an-inequality%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      1300-talet

                      1300-talet

                      Display a custom attribute below product name in the front-end Magento 1.9.3.8