Solve equation in prime numbers
Solve the equation in prime number $$p^3+q^3+1=p^2 q^2.$$
I have found the solutions $(2,3), (3,2)$ and need to prove that there are no other solutions. I think that there is an inequality $p^3+q^3+1leq p^2 q^2$ for $p,q >2 $ but how to prove it.
elementary-number-theory prime-numbers diophantine-equations
add a comment |
Solve the equation in prime number $$p^3+q^3+1=p^2 q^2.$$
I have found the solutions $(2,3), (3,2)$ and need to prove that there are no other solutions. I think that there is an inequality $p^3+q^3+1leq p^2 q^2$ for $p,q >2 $ but how to prove it.
elementary-number-theory prime-numbers diophantine-equations
2
your inequality is not right when $p>q^2$, for then $p^3 > p^2 q^2$.
– dyf
Nov 9 '18 at 20:36
add a comment |
Solve the equation in prime number $$p^3+q^3+1=p^2 q^2.$$
I have found the solutions $(2,3), (3,2)$ and need to prove that there are no other solutions. I think that there is an inequality $p^3+q^3+1leq p^2 q^2$ for $p,q >2 $ but how to prove it.
elementary-number-theory prime-numbers diophantine-equations
Solve the equation in prime number $$p^3+q^3+1=p^2 q^2.$$
I have found the solutions $(2,3), (3,2)$ and need to prove that there are no other solutions. I think that there is an inequality $p^3+q^3+1leq p^2 q^2$ for $p,q >2 $ but how to prove it.
elementary-number-theory prime-numbers diophantine-equations
elementary-number-theory prime-numbers diophantine-equations
edited Jan 4 at 21:49
greedoid
38.6k114797
38.6k114797
asked Nov 9 '18 at 20:29
LeoxLeox
5,2431423
5,2431423
2
your inequality is not right when $p>q^2$, for then $p^3 > p^2 q^2$.
– dyf
Nov 9 '18 at 20:36
add a comment |
2
your inequality is not right when $p>q^2$, for then $p^3 > p^2 q^2$.
– dyf
Nov 9 '18 at 20:36
2
2
your inequality is not right when $p>q^2$, for then $p^3 > p^2 q^2$.
– dyf
Nov 9 '18 at 20:36
your inequality is not right when $p>q^2$, for then $p^3 > p^2 q^2$.
– dyf
Nov 9 '18 at 20:36
add a comment |
2 Answers
2
active
oldest
votes
If $p=q$ we get $2p^3+1=p^4$ so $pmid 1$ which is impossible. So we can assume $pne q$.
Because of simmetry we can also assume that $p>q$.
Now we have $$p^2mid q^3+1 = (q+1)(q^2-q+1)$$
Case 1: $pnot{mid};q+1$, then $$p^2mid q^2-q+1implies p^2leq q^2-q+1<q^2$$
so $p<q$, a contradiction.
Case 2: $pmid q+1$ then $pleq q+1$ so $p=q+1$ (remember that $p>q$, so $pgeq q+1$). So $p$ and $q$ are consecutive primes so one is even, so $q=2$ and $p=3$.
add a comment |
My solution
Case 1. Let $p mod 3=q mod 3=1$. Then $p^3+q^3+1=3=0 mod 3 neq p^2 q^2=1 mod 3$
Case 2 $p mod 3=q mod 3=2$. Then $p^3+q^3+1=2+2+1=2 mod 3 neq p^2 q^2=1 mod 3$
Сase 3. $p mod 3=1, q mod 3=2$. Then $p^3+q^3+1=1+2+1=1 mod 3 neq p^2 q^2=1 cdot 2 =2 mod 3$
So, must be, say $p=0 mod 3 implies p=3$. We get the equation $q^3+28=9 q^2 $ or $q^3-9 q^2+28=left( q-2 right) left( {q}^{2}-7,q-14 right) $ and $q=2.$ By symmetry another solution is $p=2, q=3.$
1
you have an important error, in Case 3, actually both $p^2, q^2 equiv 1 pmod 3, $ therefore $p^2 q^2 equiv 1 pmod 3, $
– Will Jagy
Nov 9 '18 at 23:14
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2991909%2fsolve-equation-in-prime-numbers%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
If $p=q$ we get $2p^3+1=p^4$ so $pmid 1$ which is impossible. So we can assume $pne q$.
Because of simmetry we can also assume that $p>q$.
Now we have $$p^2mid q^3+1 = (q+1)(q^2-q+1)$$
Case 1: $pnot{mid};q+1$, then $$p^2mid q^2-q+1implies p^2leq q^2-q+1<q^2$$
so $p<q$, a contradiction.
Case 2: $pmid q+1$ then $pleq q+1$ so $p=q+1$ (remember that $p>q$, so $pgeq q+1$). So $p$ and $q$ are consecutive primes so one is even, so $q=2$ and $p=3$.
add a comment |
If $p=q$ we get $2p^3+1=p^4$ so $pmid 1$ which is impossible. So we can assume $pne q$.
Because of simmetry we can also assume that $p>q$.
Now we have $$p^2mid q^3+1 = (q+1)(q^2-q+1)$$
Case 1: $pnot{mid};q+1$, then $$p^2mid q^2-q+1implies p^2leq q^2-q+1<q^2$$
so $p<q$, a contradiction.
Case 2: $pmid q+1$ then $pleq q+1$ so $p=q+1$ (remember that $p>q$, so $pgeq q+1$). So $p$ and $q$ are consecutive primes so one is even, so $q=2$ and $p=3$.
add a comment |
If $p=q$ we get $2p^3+1=p^4$ so $pmid 1$ which is impossible. So we can assume $pne q$.
Because of simmetry we can also assume that $p>q$.
Now we have $$p^2mid q^3+1 = (q+1)(q^2-q+1)$$
Case 1: $pnot{mid};q+1$, then $$p^2mid q^2-q+1implies p^2leq q^2-q+1<q^2$$
so $p<q$, a contradiction.
Case 2: $pmid q+1$ then $pleq q+1$ so $p=q+1$ (remember that $p>q$, so $pgeq q+1$). So $p$ and $q$ are consecutive primes so one is even, so $q=2$ and $p=3$.
If $p=q$ we get $2p^3+1=p^4$ so $pmid 1$ which is impossible. So we can assume $pne q$.
Because of simmetry we can also assume that $p>q$.
Now we have $$p^2mid q^3+1 = (q+1)(q^2-q+1)$$
Case 1: $pnot{mid};q+1$, then $$p^2mid q^2-q+1implies p^2leq q^2-q+1<q^2$$
so $p<q$, a contradiction.
Case 2: $pmid q+1$ then $pleq q+1$ so $p=q+1$ (remember that $p>q$, so $pgeq q+1$). So $p$ and $q$ are consecutive primes so one is even, so $q=2$ and $p=3$.
edited Nov 9 '18 at 21:26
answered Nov 9 '18 at 21:20
greedoidgreedoid
38.6k114797
38.6k114797
add a comment |
add a comment |
My solution
Case 1. Let $p mod 3=q mod 3=1$. Then $p^3+q^3+1=3=0 mod 3 neq p^2 q^2=1 mod 3$
Case 2 $p mod 3=q mod 3=2$. Then $p^3+q^3+1=2+2+1=2 mod 3 neq p^2 q^2=1 mod 3$
Сase 3. $p mod 3=1, q mod 3=2$. Then $p^3+q^3+1=1+2+1=1 mod 3 neq p^2 q^2=1 cdot 2 =2 mod 3$
So, must be, say $p=0 mod 3 implies p=3$. We get the equation $q^3+28=9 q^2 $ or $q^3-9 q^2+28=left( q-2 right) left( {q}^{2}-7,q-14 right) $ and $q=2.$ By symmetry another solution is $p=2, q=3.$
1
you have an important error, in Case 3, actually both $p^2, q^2 equiv 1 pmod 3, $ therefore $p^2 q^2 equiv 1 pmod 3, $
– Will Jagy
Nov 9 '18 at 23:14
add a comment |
My solution
Case 1. Let $p mod 3=q mod 3=1$. Then $p^3+q^3+1=3=0 mod 3 neq p^2 q^2=1 mod 3$
Case 2 $p mod 3=q mod 3=2$. Then $p^3+q^3+1=2+2+1=2 mod 3 neq p^2 q^2=1 mod 3$
Сase 3. $p mod 3=1, q mod 3=2$. Then $p^3+q^3+1=1+2+1=1 mod 3 neq p^2 q^2=1 cdot 2 =2 mod 3$
So, must be, say $p=0 mod 3 implies p=3$. We get the equation $q^3+28=9 q^2 $ or $q^3-9 q^2+28=left( q-2 right) left( {q}^{2}-7,q-14 right) $ and $q=2.$ By symmetry another solution is $p=2, q=3.$
1
you have an important error, in Case 3, actually both $p^2, q^2 equiv 1 pmod 3, $ therefore $p^2 q^2 equiv 1 pmod 3, $
– Will Jagy
Nov 9 '18 at 23:14
add a comment |
My solution
Case 1. Let $p mod 3=q mod 3=1$. Then $p^3+q^3+1=3=0 mod 3 neq p^2 q^2=1 mod 3$
Case 2 $p mod 3=q mod 3=2$. Then $p^3+q^3+1=2+2+1=2 mod 3 neq p^2 q^2=1 mod 3$
Сase 3. $p mod 3=1, q mod 3=2$. Then $p^3+q^3+1=1+2+1=1 mod 3 neq p^2 q^2=1 cdot 2 =2 mod 3$
So, must be, say $p=0 mod 3 implies p=3$. We get the equation $q^3+28=9 q^2 $ or $q^3-9 q^2+28=left( q-2 right) left( {q}^{2}-7,q-14 right) $ and $q=2.$ By symmetry another solution is $p=2, q=3.$
My solution
Case 1. Let $p mod 3=q mod 3=1$. Then $p^3+q^3+1=3=0 mod 3 neq p^2 q^2=1 mod 3$
Case 2 $p mod 3=q mod 3=2$. Then $p^3+q^3+1=2+2+1=2 mod 3 neq p^2 q^2=1 mod 3$
Сase 3. $p mod 3=1, q mod 3=2$. Then $p^3+q^3+1=1+2+1=1 mod 3 neq p^2 q^2=1 cdot 2 =2 mod 3$
So, must be, say $p=0 mod 3 implies p=3$. We get the equation $q^3+28=9 q^2 $ or $q^3-9 q^2+28=left( q-2 right) left( {q}^{2}-7,q-14 right) $ and $q=2.$ By symmetry another solution is $p=2, q=3.$
answered Nov 9 '18 at 21:59
LeoxLeox
5,2431423
5,2431423
1
you have an important error, in Case 3, actually both $p^2, q^2 equiv 1 pmod 3, $ therefore $p^2 q^2 equiv 1 pmod 3, $
– Will Jagy
Nov 9 '18 at 23:14
add a comment |
1
you have an important error, in Case 3, actually both $p^2, q^2 equiv 1 pmod 3, $ therefore $p^2 q^2 equiv 1 pmod 3, $
– Will Jagy
Nov 9 '18 at 23:14
1
1
you have an important error, in Case 3, actually both $p^2, q^2 equiv 1 pmod 3, $ therefore $p^2 q^2 equiv 1 pmod 3, $
– Will Jagy
Nov 9 '18 at 23:14
you have an important error, in Case 3, actually both $p^2, q^2 equiv 1 pmod 3, $ therefore $p^2 q^2 equiv 1 pmod 3, $
– Will Jagy
Nov 9 '18 at 23:14
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2991909%2fsolve-equation-in-prime-numbers%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
your inequality is not right when $p>q^2$, for then $p^3 > p^2 q^2$.
– dyf
Nov 9 '18 at 20:36