Evaluate $int_0^1 log left( frac{x^2+sqrt{3}x+1}{x^2-sqrt{3}x+1} right) frac{dx}{x} $
$begingroup$
I'm trying to evaluate this integral but i'm having a lot of problems with the standards method.
$$int_0^1
log
left(
frac{x^2+sqrt{3}x+1}{x^2-sqrt{3}x+1}
right)
frac{dx}{x}
$$
I've tried integration by parts, taylor expansion of the $log$ function and some substitution.
Wolfram says that the results is $frac{pi^2}{3}$. I think that it divide the integral in four parts factorizing the argument of the logarithm with complex numbers, anyway it seems to take too long as approach.
Do you have any suggestions?
I've also noticed that the function is even so we could also write the integral as
$$
frac{1}{2}
int_{-1}^1
log
left(
frac{x^2+sqrt{3}x+1}{x^2-sqrt{3}x+1}
right)
frac{dx}{x}
$$
definite-integrals
$endgroup$
add a comment |
$begingroup$
I'm trying to evaluate this integral but i'm having a lot of problems with the standards method.
$$int_0^1
log
left(
frac{x^2+sqrt{3}x+1}{x^2-sqrt{3}x+1}
right)
frac{dx}{x}
$$
I've tried integration by parts, taylor expansion of the $log$ function and some substitution.
Wolfram says that the results is $frac{pi^2}{3}$. I think that it divide the integral in four parts factorizing the argument of the logarithm with complex numbers, anyway it seems to take too long as approach.
Do you have any suggestions?
I've also noticed that the function is even so we could also write the integral as
$$
frac{1}{2}
int_{-1}^1
log
left(
frac{x^2+sqrt{3}x+1}{x^2-sqrt{3}x+1}
right)
frac{dx}{x}
$$
definite-integrals
$endgroup$
1
$begingroup$
Both the numerator and denominator are invariant under the transformation $p(x) mapsto x^2 p(frac{1}{x})$, which suggests you might get some mileage out of applying the substitution $u = frac{1}{x}$ and rearranging.
$endgroup$
– Travis
Jan 7 at 13:13
add a comment |
$begingroup$
I'm trying to evaluate this integral but i'm having a lot of problems with the standards method.
$$int_0^1
log
left(
frac{x^2+sqrt{3}x+1}{x^2-sqrt{3}x+1}
right)
frac{dx}{x}
$$
I've tried integration by parts, taylor expansion of the $log$ function and some substitution.
Wolfram says that the results is $frac{pi^2}{3}$. I think that it divide the integral in four parts factorizing the argument of the logarithm with complex numbers, anyway it seems to take too long as approach.
Do you have any suggestions?
I've also noticed that the function is even so we could also write the integral as
$$
frac{1}{2}
int_{-1}^1
log
left(
frac{x^2+sqrt{3}x+1}{x^2-sqrt{3}x+1}
right)
frac{dx}{x}
$$
definite-integrals
$endgroup$
I'm trying to evaluate this integral but i'm having a lot of problems with the standards method.
$$int_0^1
log
left(
frac{x^2+sqrt{3}x+1}{x^2-sqrt{3}x+1}
right)
frac{dx}{x}
$$
I've tried integration by parts, taylor expansion of the $log$ function and some substitution.
Wolfram says that the results is $frac{pi^2}{3}$. I think that it divide the integral in four parts factorizing the argument of the logarithm with complex numbers, anyway it seems to take too long as approach.
Do you have any suggestions?
I've also noticed that the function is even so we could also write the integral as
$$
frac{1}{2}
int_{-1}^1
log
left(
frac{x^2+sqrt{3}x+1}{x^2-sqrt{3}x+1}
right)
frac{dx}{x}
$$
definite-integrals
definite-integrals
asked Jan 7 at 13:05
FabioFabio
1079
1079
1
$begingroup$
Both the numerator and denominator are invariant under the transformation $p(x) mapsto x^2 p(frac{1}{x})$, which suggests you might get some mileage out of applying the substitution $u = frac{1}{x}$ and rearranging.
$endgroup$
– Travis
Jan 7 at 13:13
add a comment |
1
$begingroup$
Both the numerator and denominator are invariant under the transformation $p(x) mapsto x^2 p(frac{1}{x})$, which suggests you might get some mileage out of applying the substitution $u = frac{1}{x}$ and rearranging.
$endgroup$
– Travis
Jan 7 at 13:13
1
1
$begingroup$
Both the numerator and denominator are invariant under the transformation $p(x) mapsto x^2 p(frac{1}{x})$, which suggests you might get some mileage out of applying the substitution $u = frac{1}{x}$ and rearranging.
$endgroup$
– Travis
Jan 7 at 13:13
$begingroup$
Both the numerator and denominator are invariant under the transformation $p(x) mapsto x^2 p(frac{1}{x})$, which suggests you might get some mileage out of applying the substitution $u = frac{1}{x}$ and rearranging.
$endgroup$
– Travis
Jan 7 at 13:13
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Let $$I(theta)=int_0^1frac{ln(x^2+2xcostheta+1)}xdx,$$
differentiating it gives $$I'(theta)=int_0^1-frac{2sintheta}{1+2xcostheta+x^2}dx\
=-theta$$
(since $thetain(-pi,pi)$)
The integral need to find is $$Ileft(frac16piright)-Ileft(frac56piright)=int_{5/6pi}^{1/6pi}-theta dtheta=frac13pi^2$$
$endgroup$
$begingroup$
Brilliant, i'll add this trick to my collection thank you
$endgroup$
– Fabio
Jan 7 at 13:24
1
$begingroup$
@Fabio one can actually generalize this method to see that $$int_0^1logbigg(frac{x^2+ax+1}{x^2-ax+1}bigg)frac{mathrm{d}x}{x}=frac{pi^2}2-piarccosfrac{a}2$$
$endgroup$
– clathratus
Jan 10 at 20:02
$begingroup$
I didn't noticed, besides allow to give a more elegant answer I guess this will be quite useful in the future, thanks for the observation
$endgroup$
– Fabio
Jan 10 at 20:08
add a comment |
$begingroup$
Let us consider that for any $alphain S^1$
$$ int_{0}^{1}frac{log(1-alpha x)}{x},dx = -sum_{ngeq 1}int_{0}^{1}frac{alpha^n x^{n}}{nx},dx=-sum_{ngeq 1}frac{alpha^n}{n^2}=-text{Li}_2(alpha) $$
and by setting $zeta=expleft(frac{2pi i}{12}right)$ we have
$$ int_{0}^{1}logleft(frac{1-sqrt{3}x+x^2}{1+sqrt{3}x+x^2}right),frac{dx}{x}=int_{0}^{1}left[log(1-zeta x)+log(1-zeta^{11} x)-log(1-zeta^5 x)-log(1-zeta^7 x)right]frac{dx}{x} $$
hence your integral equals
$$ text{Li}_2(zeta)+text{Li}_2(zeta^{11})-text{Li}_2(zeta^5)-text{Li}_2(zeta^7)=2text{Re},text{Li}_2(zeta)-2text{Re},text{Li}_2(zeta^5). $$
Last trick: $text{Re},text{Li}_2(e^{itheta})$ is an elementary function, since it is the formal primitive of the sawtooth wave $sum_{ngeq 1}frac{sin(nx)}{n}$ (piecewise-linear), hence a periodic and piecewise-parabolic function. Putting everything together, the outcome is simply $2zeta(2)=frac{pi^2}{3}$.
$endgroup$
$begingroup$
That's impressive! But i don't understand some things sorry for the ignorance: what's the set $S^1$?
$endgroup$
– Fabio
Jan 7 at 13:31
1
$begingroup$
@Fabio: the unit circle centered at the origin of the complex plane.
$endgroup$
– Jack D'Aurizio
Jan 7 at 13:52
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064983%2fevaluate-int-01-log-left-fracx2-sqrt3x1x2-sqrt3x1-right%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $$I(theta)=int_0^1frac{ln(x^2+2xcostheta+1)}xdx,$$
differentiating it gives $$I'(theta)=int_0^1-frac{2sintheta}{1+2xcostheta+x^2}dx\
=-theta$$
(since $thetain(-pi,pi)$)
The integral need to find is $$Ileft(frac16piright)-Ileft(frac56piright)=int_{5/6pi}^{1/6pi}-theta dtheta=frac13pi^2$$
$endgroup$
$begingroup$
Brilliant, i'll add this trick to my collection thank you
$endgroup$
– Fabio
Jan 7 at 13:24
1
$begingroup$
@Fabio one can actually generalize this method to see that $$int_0^1logbigg(frac{x^2+ax+1}{x^2-ax+1}bigg)frac{mathrm{d}x}{x}=frac{pi^2}2-piarccosfrac{a}2$$
$endgroup$
– clathratus
Jan 10 at 20:02
$begingroup$
I didn't noticed, besides allow to give a more elegant answer I guess this will be quite useful in the future, thanks for the observation
$endgroup$
– Fabio
Jan 10 at 20:08
add a comment |
$begingroup$
Let $$I(theta)=int_0^1frac{ln(x^2+2xcostheta+1)}xdx,$$
differentiating it gives $$I'(theta)=int_0^1-frac{2sintheta}{1+2xcostheta+x^2}dx\
=-theta$$
(since $thetain(-pi,pi)$)
The integral need to find is $$Ileft(frac16piright)-Ileft(frac56piright)=int_{5/6pi}^{1/6pi}-theta dtheta=frac13pi^2$$
$endgroup$
$begingroup$
Brilliant, i'll add this trick to my collection thank you
$endgroup$
– Fabio
Jan 7 at 13:24
1
$begingroup$
@Fabio one can actually generalize this method to see that $$int_0^1logbigg(frac{x^2+ax+1}{x^2-ax+1}bigg)frac{mathrm{d}x}{x}=frac{pi^2}2-piarccosfrac{a}2$$
$endgroup$
– clathratus
Jan 10 at 20:02
$begingroup$
I didn't noticed, besides allow to give a more elegant answer I guess this will be quite useful in the future, thanks for the observation
$endgroup$
– Fabio
Jan 10 at 20:08
add a comment |
$begingroup$
Let $$I(theta)=int_0^1frac{ln(x^2+2xcostheta+1)}xdx,$$
differentiating it gives $$I'(theta)=int_0^1-frac{2sintheta}{1+2xcostheta+x^2}dx\
=-theta$$
(since $thetain(-pi,pi)$)
The integral need to find is $$Ileft(frac16piright)-Ileft(frac56piright)=int_{5/6pi}^{1/6pi}-theta dtheta=frac13pi^2$$
$endgroup$
Let $$I(theta)=int_0^1frac{ln(x^2+2xcostheta+1)}xdx,$$
differentiating it gives $$I'(theta)=int_0^1-frac{2sintheta}{1+2xcostheta+x^2}dx\
=-theta$$
(since $thetain(-pi,pi)$)
The integral need to find is $$Ileft(frac16piright)-Ileft(frac56piright)=int_{5/6pi}^{1/6pi}-theta dtheta=frac13pi^2$$
answered Jan 7 at 13:21
Kemono ChenKemono Chen
2,9701739
2,9701739
$begingroup$
Brilliant, i'll add this trick to my collection thank you
$endgroup$
– Fabio
Jan 7 at 13:24
1
$begingroup$
@Fabio one can actually generalize this method to see that $$int_0^1logbigg(frac{x^2+ax+1}{x^2-ax+1}bigg)frac{mathrm{d}x}{x}=frac{pi^2}2-piarccosfrac{a}2$$
$endgroup$
– clathratus
Jan 10 at 20:02
$begingroup$
I didn't noticed, besides allow to give a more elegant answer I guess this will be quite useful in the future, thanks for the observation
$endgroup$
– Fabio
Jan 10 at 20:08
add a comment |
$begingroup$
Brilliant, i'll add this trick to my collection thank you
$endgroup$
– Fabio
Jan 7 at 13:24
1
$begingroup$
@Fabio one can actually generalize this method to see that $$int_0^1logbigg(frac{x^2+ax+1}{x^2-ax+1}bigg)frac{mathrm{d}x}{x}=frac{pi^2}2-piarccosfrac{a}2$$
$endgroup$
– clathratus
Jan 10 at 20:02
$begingroup$
I didn't noticed, besides allow to give a more elegant answer I guess this will be quite useful in the future, thanks for the observation
$endgroup$
– Fabio
Jan 10 at 20:08
$begingroup$
Brilliant, i'll add this trick to my collection thank you
$endgroup$
– Fabio
Jan 7 at 13:24
$begingroup$
Brilliant, i'll add this trick to my collection thank you
$endgroup$
– Fabio
Jan 7 at 13:24
1
1
$begingroup$
@Fabio one can actually generalize this method to see that $$int_0^1logbigg(frac{x^2+ax+1}{x^2-ax+1}bigg)frac{mathrm{d}x}{x}=frac{pi^2}2-piarccosfrac{a}2$$
$endgroup$
– clathratus
Jan 10 at 20:02
$begingroup$
@Fabio one can actually generalize this method to see that $$int_0^1logbigg(frac{x^2+ax+1}{x^2-ax+1}bigg)frac{mathrm{d}x}{x}=frac{pi^2}2-piarccosfrac{a}2$$
$endgroup$
– clathratus
Jan 10 at 20:02
$begingroup$
I didn't noticed, besides allow to give a more elegant answer I guess this will be quite useful in the future, thanks for the observation
$endgroup$
– Fabio
Jan 10 at 20:08
$begingroup$
I didn't noticed, besides allow to give a more elegant answer I guess this will be quite useful in the future, thanks for the observation
$endgroup$
– Fabio
Jan 10 at 20:08
add a comment |
$begingroup$
Let us consider that for any $alphain S^1$
$$ int_{0}^{1}frac{log(1-alpha x)}{x},dx = -sum_{ngeq 1}int_{0}^{1}frac{alpha^n x^{n}}{nx},dx=-sum_{ngeq 1}frac{alpha^n}{n^2}=-text{Li}_2(alpha) $$
and by setting $zeta=expleft(frac{2pi i}{12}right)$ we have
$$ int_{0}^{1}logleft(frac{1-sqrt{3}x+x^2}{1+sqrt{3}x+x^2}right),frac{dx}{x}=int_{0}^{1}left[log(1-zeta x)+log(1-zeta^{11} x)-log(1-zeta^5 x)-log(1-zeta^7 x)right]frac{dx}{x} $$
hence your integral equals
$$ text{Li}_2(zeta)+text{Li}_2(zeta^{11})-text{Li}_2(zeta^5)-text{Li}_2(zeta^7)=2text{Re},text{Li}_2(zeta)-2text{Re},text{Li}_2(zeta^5). $$
Last trick: $text{Re},text{Li}_2(e^{itheta})$ is an elementary function, since it is the formal primitive of the sawtooth wave $sum_{ngeq 1}frac{sin(nx)}{n}$ (piecewise-linear), hence a periodic and piecewise-parabolic function. Putting everything together, the outcome is simply $2zeta(2)=frac{pi^2}{3}$.
$endgroup$
$begingroup$
That's impressive! But i don't understand some things sorry for the ignorance: what's the set $S^1$?
$endgroup$
– Fabio
Jan 7 at 13:31
1
$begingroup$
@Fabio: the unit circle centered at the origin of the complex plane.
$endgroup$
– Jack D'Aurizio
Jan 7 at 13:52
add a comment |
$begingroup$
Let us consider that for any $alphain S^1$
$$ int_{0}^{1}frac{log(1-alpha x)}{x},dx = -sum_{ngeq 1}int_{0}^{1}frac{alpha^n x^{n}}{nx},dx=-sum_{ngeq 1}frac{alpha^n}{n^2}=-text{Li}_2(alpha) $$
and by setting $zeta=expleft(frac{2pi i}{12}right)$ we have
$$ int_{0}^{1}logleft(frac{1-sqrt{3}x+x^2}{1+sqrt{3}x+x^2}right),frac{dx}{x}=int_{0}^{1}left[log(1-zeta x)+log(1-zeta^{11} x)-log(1-zeta^5 x)-log(1-zeta^7 x)right]frac{dx}{x} $$
hence your integral equals
$$ text{Li}_2(zeta)+text{Li}_2(zeta^{11})-text{Li}_2(zeta^5)-text{Li}_2(zeta^7)=2text{Re},text{Li}_2(zeta)-2text{Re},text{Li}_2(zeta^5). $$
Last trick: $text{Re},text{Li}_2(e^{itheta})$ is an elementary function, since it is the formal primitive of the sawtooth wave $sum_{ngeq 1}frac{sin(nx)}{n}$ (piecewise-linear), hence a periodic and piecewise-parabolic function. Putting everything together, the outcome is simply $2zeta(2)=frac{pi^2}{3}$.
$endgroup$
$begingroup$
That's impressive! But i don't understand some things sorry for the ignorance: what's the set $S^1$?
$endgroup$
– Fabio
Jan 7 at 13:31
1
$begingroup$
@Fabio: the unit circle centered at the origin of the complex plane.
$endgroup$
– Jack D'Aurizio
Jan 7 at 13:52
add a comment |
$begingroup$
Let us consider that for any $alphain S^1$
$$ int_{0}^{1}frac{log(1-alpha x)}{x},dx = -sum_{ngeq 1}int_{0}^{1}frac{alpha^n x^{n}}{nx},dx=-sum_{ngeq 1}frac{alpha^n}{n^2}=-text{Li}_2(alpha) $$
and by setting $zeta=expleft(frac{2pi i}{12}right)$ we have
$$ int_{0}^{1}logleft(frac{1-sqrt{3}x+x^2}{1+sqrt{3}x+x^2}right),frac{dx}{x}=int_{0}^{1}left[log(1-zeta x)+log(1-zeta^{11} x)-log(1-zeta^5 x)-log(1-zeta^7 x)right]frac{dx}{x} $$
hence your integral equals
$$ text{Li}_2(zeta)+text{Li}_2(zeta^{11})-text{Li}_2(zeta^5)-text{Li}_2(zeta^7)=2text{Re},text{Li}_2(zeta)-2text{Re},text{Li}_2(zeta^5). $$
Last trick: $text{Re},text{Li}_2(e^{itheta})$ is an elementary function, since it is the formal primitive of the sawtooth wave $sum_{ngeq 1}frac{sin(nx)}{n}$ (piecewise-linear), hence a periodic and piecewise-parabolic function. Putting everything together, the outcome is simply $2zeta(2)=frac{pi^2}{3}$.
$endgroup$
Let us consider that for any $alphain S^1$
$$ int_{0}^{1}frac{log(1-alpha x)}{x},dx = -sum_{ngeq 1}int_{0}^{1}frac{alpha^n x^{n}}{nx},dx=-sum_{ngeq 1}frac{alpha^n}{n^2}=-text{Li}_2(alpha) $$
and by setting $zeta=expleft(frac{2pi i}{12}right)$ we have
$$ int_{0}^{1}logleft(frac{1-sqrt{3}x+x^2}{1+sqrt{3}x+x^2}right),frac{dx}{x}=int_{0}^{1}left[log(1-zeta x)+log(1-zeta^{11} x)-log(1-zeta^5 x)-log(1-zeta^7 x)right]frac{dx}{x} $$
hence your integral equals
$$ text{Li}_2(zeta)+text{Li}_2(zeta^{11})-text{Li}_2(zeta^5)-text{Li}_2(zeta^7)=2text{Re},text{Li}_2(zeta)-2text{Re},text{Li}_2(zeta^5). $$
Last trick: $text{Re},text{Li}_2(e^{itheta})$ is an elementary function, since it is the formal primitive of the sawtooth wave $sum_{ngeq 1}frac{sin(nx)}{n}$ (piecewise-linear), hence a periodic and piecewise-parabolic function. Putting everything together, the outcome is simply $2zeta(2)=frac{pi^2}{3}$.
edited Jan 7 at 18:21
answered Jan 7 at 13:25
Jack D'AurizioJack D'Aurizio
288k33280660
288k33280660
$begingroup$
That's impressive! But i don't understand some things sorry for the ignorance: what's the set $S^1$?
$endgroup$
– Fabio
Jan 7 at 13:31
1
$begingroup$
@Fabio: the unit circle centered at the origin of the complex plane.
$endgroup$
– Jack D'Aurizio
Jan 7 at 13:52
add a comment |
$begingroup$
That's impressive! But i don't understand some things sorry for the ignorance: what's the set $S^1$?
$endgroup$
– Fabio
Jan 7 at 13:31
1
$begingroup$
@Fabio: the unit circle centered at the origin of the complex plane.
$endgroup$
– Jack D'Aurizio
Jan 7 at 13:52
$begingroup$
That's impressive! But i don't understand some things sorry for the ignorance: what's the set $S^1$?
$endgroup$
– Fabio
Jan 7 at 13:31
$begingroup$
That's impressive! But i don't understand some things sorry for the ignorance: what's the set $S^1$?
$endgroup$
– Fabio
Jan 7 at 13:31
1
1
$begingroup$
@Fabio: the unit circle centered at the origin of the complex plane.
$endgroup$
– Jack D'Aurizio
Jan 7 at 13:52
$begingroup$
@Fabio: the unit circle centered at the origin of the complex plane.
$endgroup$
– Jack D'Aurizio
Jan 7 at 13:52
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064983%2fevaluate-int-01-log-left-fracx2-sqrt3x1x2-sqrt3x1-right%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Both the numerator and denominator are invariant under the transformation $p(x) mapsto x^2 p(frac{1}{x})$, which suggests you might get some mileage out of applying the substitution $u = frac{1}{x}$ and rearranging.
$endgroup$
– Travis
Jan 7 at 13:13