Evaluate integral of $ln(u)exp{-bu}/u du$












0












$begingroup$


While doing my research, I came across this integral and don't know how to solve for this:
$$int_{0}^{infty}x^2exp{ax-be^{ax}}dx,text{where $a,b>0$}.$$
My attempt:
begin{align}
int_{0}^{infty}x^2exp{ax-be^{ax}}dx &overset{x = ln u}{=} int_1^{infty}frac{1}{u}left(ln uright)^{2}expleft{aln u-be^{a ln u}right}du\
&=int_{1}^{infty}(ln u)^2u^{a-1}e^{-bu^a}du\
&overset{t=u^a}{propto} int_{1}^{infty}(ln t)^2e^{-bt}dt = A
end{align}

Then, integration by part where $k=(ln t)^2$, we have:
$$Apropto int_{1}^{infty}frac{1}{t}(ln t )exp{-bt}dt=B$$
Here, my first approach is to use Taylor Series expansion and obtain:
$$B=int_{1}^{infty}frac{1}{t}(ln t)sum_{n=0}^inftyfrac{(-bt)^n}{n!}dt=int_{1}^{infty}sum_{n=0}^{infty}(-1)^nfrac{b^nt^{n-1}ln t}{n!}dt$$
However, here $f_{n}(t) = (-1)^nfrac{b^nt^{n-1}ln t}{n!}$ is not greater than $0$ for all values of $t$ since $b > 0$, so I can't interchange integration and summation. (by Fubini's theorem)



Then, my second approach I integration by part one more time:
$$B=int_{1}^{infty}frac{1}{t}(ln t )exp{-bt}dtoverset{k=ln x}{=}int_{0}^{infty}kexp{-be^k}dk$$
Let $y=k$ and $dz=exp{-be^k}dk rightarrow z = -E_1left(be^kright)$
So,
$$B=-tE_1left(be^kright)big|_{0}^{infty}+int_{0}^{infty}E_1left(be^kright)dk$$
where $E_1left(be^kright)$ is the exponential integral of $be^k$.



But now, I don't know where to go from here.
Any suggestion?










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    While doing my research, I came across this integral and don't know how to solve for this:
    $$int_{0}^{infty}x^2exp{ax-be^{ax}}dx,text{where $a,b>0$}.$$
    My attempt:
    begin{align}
    int_{0}^{infty}x^2exp{ax-be^{ax}}dx &overset{x = ln u}{=} int_1^{infty}frac{1}{u}left(ln uright)^{2}expleft{aln u-be^{a ln u}right}du\
    &=int_{1}^{infty}(ln u)^2u^{a-1}e^{-bu^a}du\
    &overset{t=u^a}{propto} int_{1}^{infty}(ln t)^2e^{-bt}dt = A
    end{align}

    Then, integration by part where $k=(ln t)^2$, we have:
    $$Apropto int_{1}^{infty}frac{1}{t}(ln t )exp{-bt}dt=B$$
    Here, my first approach is to use Taylor Series expansion and obtain:
    $$B=int_{1}^{infty}frac{1}{t}(ln t)sum_{n=0}^inftyfrac{(-bt)^n}{n!}dt=int_{1}^{infty}sum_{n=0}^{infty}(-1)^nfrac{b^nt^{n-1}ln t}{n!}dt$$
    However, here $f_{n}(t) = (-1)^nfrac{b^nt^{n-1}ln t}{n!}$ is not greater than $0$ for all values of $t$ since $b > 0$, so I can't interchange integration and summation. (by Fubini's theorem)



    Then, my second approach I integration by part one more time:
    $$B=int_{1}^{infty}frac{1}{t}(ln t )exp{-bt}dtoverset{k=ln x}{=}int_{0}^{infty}kexp{-be^k}dk$$
    Let $y=k$ and $dz=exp{-be^k}dk rightarrow z = -E_1left(be^kright)$
    So,
    $$B=-tE_1left(be^kright)big|_{0}^{infty}+int_{0}^{infty}E_1left(be^kright)dk$$
    where $E_1left(be^kright)$ is the exponential integral of $be^k$.



    But now, I don't know where to go from here.
    Any suggestion?










    share|cite|improve this question











    $endgroup$















      0












      0








      0


      1



      $begingroup$


      While doing my research, I came across this integral and don't know how to solve for this:
      $$int_{0}^{infty}x^2exp{ax-be^{ax}}dx,text{where $a,b>0$}.$$
      My attempt:
      begin{align}
      int_{0}^{infty}x^2exp{ax-be^{ax}}dx &overset{x = ln u}{=} int_1^{infty}frac{1}{u}left(ln uright)^{2}expleft{aln u-be^{a ln u}right}du\
      &=int_{1}^{infty}(ln u)^2u^{a-1}e^{-bu^a}du\
      &overset{t=u^a}{propto} int_{1}^{infty}(ln t)^2e^{-bt}dt = A
      end{align}

      Then, integration by part where $k=(ln t)^2$, we have:
      $$Apropto int_{1}^{infty}frac{1}{t}(ln t )exp{-bt}dt=B$$
      Here, my first approach is to use Taylor Series expansion and obtain:
      $$B=int_{1}^{infty}frac{1}{t}(ln t)sum_{n=0}^inftyfrac{(-bt)^n}{n!}dt=int_{1}^{infty}sum_{n=0}^{infty}(-1)^nfrac{b^nt^{n-1}ln t}{n!}dt$$
      However, here $f_{n}(t) = (-1)^nfrac{b^nt^{n-1}ln t}{n!}$ is not greater than $0$ for all values of $t$ since $b > 0$, so I can't interchange integration and summation. (by Fubini's theorem)



      Then, my second approach I integration by part one more time:
      $$B=int_{1}^{infty}frac{1}{t}(ln t )exp{-bt}dtoverset{k=ln x}{=}int_{0}^{infty}kexp{-be^k}dk$$
      Let $y=k$ and $dz=exp{-be^k}dk rightarrow z = -E_1left(be^kright)$
      So,
      $$B=-tE_1left(be^kright)big|_{0}^{infty}+int_{0}^{infty}E_1left(be^kright)dk$$
      where $E_1left(be^kright)$ is the exponential integral of $be^k$.



      But now, I don't know where to go from here.
      Any suggestion?










      share|cite|improve this question











      $endgroup$




      While doing my research, I came across this integral and don't know how to solve for this:
      $$int_{0}^{infty}x^2exp{ax-be^{ax}}dx,text{where $a,b>0$}.$$
      My attempt:
      begin{align}
      int_{0}^{infty}x^2exp{ax-be^{ax}}dx &overset{x = ln u}{=} int_1^{infty}frac{1}{u}left(ln uright)^{2}expleft{aln u-be^{a ln u}right}du\
      &=int_{1}^{infty}(ln u)^2u^{a-1}e^{-bu^a}du\
      &overset{t=u^a}{propto} int_{1}^{infty}(ln t)^2e^{-bt}dt = A
      end{align}

      Then, integration by part where $k=(ln t)^2$, we have:
      $$Apropto int_{1}^{infty}frac{1}{t}(ln t )exp{-bt}dt=B$$
      Here, my first approach is to use Taylor Series expansion and obtain:
      $$B=int_{1}^{infty}frac{1}{t}(ln t)sum_{n=0}^inftyfrac{(-bt)^n}{n!}dt=int_{1}^{infty}sum_{n=0}^{infty}(-1)^nfrac{b^nt^{n-1}ln t}{n!}dt$$
      However, here $f_{n}(t) = (-1)^nfrac{b^nt^{n-1}ln t}{n!}$ is not greater than $0$ for all values of $t$ since $b > 0$, so I can't interchange integration and summation. (by Fubini's theorem)



      Then, my second approach I integration by part one more time:
      $$B=int_{1}^{infty}frac{1}{t}(ln t )exp{-bt}dtoverset{k=ln x}{=}int_{0}^{infty}kexp{-be^k}dk$$
      Let $y=k$ and $dz=exp{-be^k}dk rightarrow z = -E_1left(be^kright)$
      So,
      $$B=-tE_1left(be^kright)big|_{0}^{infty}+int_{0}^{infty}E_1left(be^kright)dk$$
      where $E_1left(be^kright)$ is the exponential integral of $be^k$.



      But now, I don't know where to go from here.
      Any suggestion?







      integration definite-integrals improper-integrals gamma-function






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 7 at 11:08









      Harry Peter

      5,47111439




      5,47111439










      asked Dec 28 '18 at 23:00









      HarryHarry

      21229




      21229






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          Starting with $A$, and knowing that the constant of proportionality is $a^{-3}$, we can see that
          begin{align}
          A&=a^{-3}int_1^infty log^2 x, e^{-bx},dx \
          &= a^{-3}frac{partial^2}{partial mu^2} int_1^infty x^{mu-1} e^{-bx},dx Big|_{mu=1} \
          &= a^{-3}frac{partial^2}{partial mu^2} b^{-mu} int_b^infty z^{mu-1} e^{-z},dz Big|_{mu=1} \
          &= a^{-3}frac{partial^2}{partial mu^2} b^{-mu} ,Gamma(mu, b) Big|_{mu=1}\
          end{align}

          Where $Gamma(mu, b)$ is the upper incomplete gamma function. Now, if you want to go further, we can use the lower incomplete gamma function and its series representation:



          begin{align}
          A&= a^{-3}frac{partial^2}{partial mu^2} b^{-mu} Big{ left( Gamma(mu)-gamma(mu, b)right)Big} Big|_{mu=1}\
          &= a^{-3}frac{partial^2}{partial mu^2} Big{ b^{-mu} Gamma(mu)-b^{-mu} gamma(mu, b) Big} Big|_{mu=1}\
          &= a^{-3}frac{partial^2}{partial mu^2}Big{ b^{-mu} Gamma(mu)-b^{-mu} sum_{nge 0} frac{(-1)^n}{n!} frac{b^{mu+n}}{mu+n} Big}Big|_{mu=1}\
          &= a^{-3}frac{partial^2}{partial mu^2} Big{b^{-mu} Gamma(mu)- sum_{nge 0} frac{(-1)^n}{n!} frac{b^n}{mu+n} Big} Big|_{mu=1}\
          &= a^{-3}frac{log^2 b +2gammalog b +pi^2/6 + gamma^2}{b}- 2a^{-3}sum_{nge 0} frac{(-1)^n}{n!} frac{b^n}{(n+1)^3}\
          end{align}






          share|cite|improve this answer











          $endgroup$





















            2












            $begingroup$

            The integral you call $A$ can be split into two integrals.



            $$ A = frac{1}{a^{3}}int_{1}^{infty}ln^{2}t,e^{-bt},mathrm{d}t = frac{1}{a^{3}}left[int_{0}^{infty}ln^{2}t,e^{-bt},mathrm{d}t - int_{0}^{1}ln^{2}t, e^{-bt},mathrm{d}tright] = frac{1}{a^{3}}(A_{1} - A_{2}) $$



            The first one can be done by considering the series expansion



            $$begin{aligned} int_{0}^{infty}t^{epsilon}e^{-bt},mathrm{d}t &= sum_{n=0}^{infty}frac{epsilon^{n}}{n!}int_{0}^{infty}ln^{n}t,e^{-bt},mathrm{d}t \
            &= frac{1}{b^{1+epsilon}}int_{0}^{infty}t^{epsilon}e^{-t},mathrm{d}t = frac{Gamma(1+epsilon)}{b^{1+epsilon}}end{aligned}$$



            and expanding the latter term to second order in $epsilon$. The integral will then be $2! = 2$ times the coefficient of the $epsilon^{2}$ term to compensate for the factorial. Using the Taylor expansion



            $$ lnGamma(1+epsilon) = -gammaepsilon + sum_{k=2}^{infty}frac{(-1)^{k}zeta(k)}{k}epsilon^{k},$$



            we have



            $$begin{aligned} frac{Gamma(1+epsilon)}{b^{1+epsilon}} &approx frac{e^{-gammaepsilon + frac{zeta(2)}{2}epsilon^{2}}}{be^{epsilonln b}}
            approx frac{1}{b}left(1 - epsilonln b + frac{ln^{2}b}{2}epsilon^{2}right)left(1 - gammaepsilon + frac{zeta(2)}{2}epsilon^{2} + frac{gamma^{2}}{2}epsilon^{2}right) \
            &approx frac{1}{b}left(1 + left(-gamma - ln bright)epsilon +left(frac{zeta(2)}{2} + frac{gamma^{2}}{2} + gammaln b + frac{ln^{2}b}{2}right)epsilon^{2}right)end{aligned}$$



            so



            $$ A_{1} = frac{1}{b}left(zeta(2) + gamma^{2} + 2gammaln b + ln^{2}bright). $$



            The second integral can be done using series again, but I am not sure if it has a nice expression. I write it in terms of hypergeometric functions. The Taylor series of the exponential is used. (Note I can switch sum and integral because $int_{0}^{1}t^{k}ln^{2}t,mathrm{d}t$ certainly converges for any whole number $k$, as the divergence of $ln^{2}t$ is weak)



            $$ A_{2} = int_{0}^{1}ln^{2}t,sum_{k=0}^{infty}frac{(-1)^{k}b^{k}t^{k}}{k!},mathrm{d}t = sum_{k=0}^{infty}frac{(-1)^{k}b^{k}}{k!}int_{0}^{1}t^{k}ln^{2}t,mathrm{d}t $$



            Consider



            $$ int_{0}^{1}t^{k+epsilon},mathrm{d}t = sum_{n=0}^{infty}frac{epsilon^{n}}{n!}int_{0}^{1}t^{k}ln^{n}t,mathrm{d}t = frac{1}{k+epsilon+1}$$



            where we are again finding the $epsilon^{2}$ coefficient. It follows that



            $$ frac{1}{1+k+epsilon} = frac{1}{1+k}frac{1}{1+frac{epsilon}{1+k}} = frac{1}{1+k}sum_{j=0}^{infty}(-1)^{j}left(frac{epsilon}{1+k}right)^{j}$$



            so



            $$ int_{0}^{1}t^{k}ln^{2}t,mathrm{d}t = frac{2}{(1+k)^{3}} quadtoquad A_{2} = sum_{k=0}^{infty}frac{(-1)^{k}b^{k}}{k!}frac{2}{(1+k)^{3}} = 2,{}_{3}F_{3}(1,1,1;2,2,2;-b).$$






            share|cite|improve this answer











            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055365%2fevaluate-integral-of-lnu-exp-bu-u-du%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              1












              $begingroup$

              Starting with $A$, and knowing that the constant of proportionality is $a^{-3}$, we can see that
              begin{align}
              A&=a^{-3}int_1^infty log^2 x, e^{-bx},dx \
              &= a^{-3}frac{partial^2}{partial mu^2} int_1^infty x^{mu-1} e^{-bx},dx Big|_{mu=1} \
              &= a^{-3}frac{partial^2}{partial mu^2} b^{-mu} int_b^infty z^{mu-1} e^{-z},dz Big|_{mu=1} \
              &= a^{-3}frac{partial^2}{partial mu^2} b^{-mu} ,Gamma(mu, b) Big|_{mu=1}\
              end{align}

              Where $Gamma(mu, b)$ is the upper incomplete gamma function. Now, if you want to go further, we can use the lower incomplete gamma function and its series representation:



              begin{align}
              A&= a^{-3}frac{partial^2}{partial mu^2} b^{-mu} Big{ left( Gamma(mu)-gamma(mu, b)right)Big} Big|_{mu=1}\
              &= a^{-3}frac{partial^2}{partial mu^2} Big{ b^{-mu} Gamma(mu)-b^{-mu} gamma(mu, b) Big} Big|_{mu=1}\
              &= a^{-3}frac{partial^2}{partial mu^2}Big{ b^{-mu} Gamma(mu)-b^{-mu} sum_{nge 0} frac{(-1)^n}{n!} frac{b^{mu+n}}{mu+n} Big}Big|_{mu=1}\
              &= a^{-3}frac{partial^2}{partial mu^2} Big{b^{-mu} Gamma(mu)- sum_{nge 0} frac{(-1)^n}{n!} frac{b^n}{mu+n} Big} Big|_{mu=1}\
              &= a^{-3}frac{log^2 b +2gammalog b +pi^2/6 + gamma^2}{b}- 2a^{-3}sum_{nge 0} frac{(-1)^n}{n!} frac{b^n}{(n+1)^3}\
              end{align}






              share|cite|improve this answer











              $endgroup$


















                1












                $begingroup$

                Starting with $A$, and knowing that the constant of proportionality is $a^{-3}$, we can see that
                begin{align}
                A&=a^{-3}int_1^infty log^2 x, e^{-bx},dx \
                &= a^{-3}frac{partial^2}{partial mu^2} int_1^infty x^{mu-1} e^{-bx},dx Big|_{mu=1} \
                &= a^{-3}frac{partial^2}{partial mu^2} b^{-mu} int_b^infty z^{mu-1} e^{-z},dz Big|_{mu=1} \
                &= a^{-3}frac{partial^2}{partial mu^2} b^{-mu} ,Gamma(mu, b) Big|_{mu=1}\
                end{align}

                Where $Gamma(mu, b)$ is the upper incomplete gamma function. Now, if you want to go further, we can use the lower incomplete gamma function and its series representation:



                begin{align}
                A&= a^{-3}frac{partial^2}{partial mu^2} b^{-mu} Big{ left( Gamma(mu)-gamma(mu, b)right)Big} Big|_{mu=1}\
                &= a^{-3}frac{partial^2}{partial mu^2} Big{ b^{-mu} Gamma(mu)-b^{-mu} gamma(mu, b) Big} Big|_{mu=1}\
                &= a^{-3}frac{partial^2}{partial mu^2}Big{ b^{-mu} Gamma(mu)-b^{-mu} sum_{nge 0} frac{(-1)^n}{n!} frac{b^{mu+n}}{mu+n} Big}Big|_{mu=1}\
                &= a^{-3}frac{partial^2}{partial mu^2} Big{b^{-mu} Gamma(mu)- sum_{nge 0} frac{(-1)^n}{n!} frac{b^n}{mu+n} Big} Big|_{mu=1}\
                &= a^{-3}frac{log^2 b +2gammalog b +pi^2/6 + gamma^2}{b}- 2a^{-3}sum_{nge 0} frac{(-1)^n}{n!} frac{b^n}{(n+1)^3}\
                end{align}






                share|cite|improve this answer











                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Starting with $A$, and knowing that the constant of proportionality is $a^{-3}$, we can see that
                  begin{align}
                  A&=a^{-3}int_1^infty log^2 x, e^{-bx},dx \
                  &= a^{-3}frac{partial^2}{partial mu^2} int_1^infty x^{mu-1} e^{-bx},dx Big|_{mu=1} \
                  &= a^{-3}frac{partial^2}{partial mu^2} b^{-mu} int_b^infty z^{mu-1} e^{-z},dz Big|_{mu=1} \
                  &= a^{-3}frac{partial^2}{partial mu^2} b^{-mu} ,Gamma(mu, b) Big|_{mu=1}\
                  end{align}

                  Where $Gamma(mu, b)$ is the upper incomplete gamma function. Now, if you want to go further, we can use the lower incomplete gamma function and its series representation:



                  begin{align}
                  A&= a^{-3}frac{partial^2}{partial mu^2} b^{-mu} Big{ left( Gamma(mu)-gamma(mu, b)right)Big} Big|_{mu=1}\
                  &= a^{-3}frac{partial^2}{partial mu^2} Big{ b^{-mu} Gamma(mu)-b^{-mu} gamma(mu, b) Big} Big|_{mu=1}\
                  &= a^{-3}frac{partial^2}{partial mu^2}Big{ b^{-mu} Gamma(mu)-b^{-mu} sum_{nge 0} frac{(-1)^n}{n!} frac{b^{mu+n}}{mu+n} Big}Big|_{mu=1}\
                  &= a^{-3}frac{partial^2}{partial mu^2} Big{b^{-mu} Gamma(mu)- sum_{nge 0} frac{(-1)^n}{n!} frac{b^n}{mu+n} Big} Big|_{mu=1}\
                  &= a^{-3}frac{log^2 b +2gammalog b +pi^2/6 + gamma^2}{b}- 2a^{-3}sum_{nge 0} frac{(-1)^n}{n!} frac{b^n}{(n+1)^3}\
                  end{align}






                  share|cite|improve this answer











                  $endgroup$



                  Starting with $A$, and knowing that the constant of proportionality is $a^{-3}$, we can see that
                  begin{align}
                  A&=a^{-3}int_1^infty log^2 x, e^{-bx},dx \
                  &= a^{-3}frac{partial^2}{partial mu^2} int_1^infty x^{mu-1} e^{-bx},dx Big|_{mu=1} \
                  &= a^{-3}frac{partial^2}{partial mu^2} b^{-mu} int_b^infty z^{mu-1} e^{-z},dz Big|_{mu=1} \
                  &= a^{-3}frac{partial^2}{partial mu^2} b^{-mu} ,Gamma(mu, b) Big|_{mu=1}\
                  end{align}

                  Where $Gamma(mu, b)$ is the upper incomplete gamma function. Now, if you want to go further, we can use the lower incomplete gamma function and its series representation:



                  begin{align}
                  A&= a^{-3}frac{partial^2}{partial mu^2} b^{-mu} Big{ left( Gamma(mu)-gamma(mu, b)right)Big} Big|_{mu=1}\
                  &= a^{-3}frac{partial^2}{partial mu^2} Big{ b^{-mu} Gamma(mu)-b^{-mu} gamma(mu, b) Big} Big|_{mu=1}\
                  &= a^{-3}frac{partial^2}{partial mu^2}Big{ b^{-mu} Gamma(mu)-b^{-mu} sum_{nge 0} frac{(-1)^n}{n!} frac{b^{mu+n}}{mu+n} Big}Big|_{mu=1}\
                  &= a^{-3}frac{partial^2}{partial mu^2} Big{b^{-mu} Gamma(mu)- sum_{nge 0} frac{(-1)^n}{n!} frac{b^n}{mu+n} Big} Big|_{mu=1}\
                  &= a^{-3}frac{log^2 b +2gammalog b +pi^2/6 + gamma^2}{b}- 2a^{-3}sum_{nge 0} frac{(-1)^n}{n!} frac{b^n}{(n+1)^3}\
                  end{align}







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Dec 29 '18 at 2:08

























                  answered Dec 29 '18 at 1:05









                  ZacharyZachary

                  2,3351214




                  2,3351214























                      2












                      $begingroup$

                      The integral you call $A$ can be split into two integrals.



                      $$ A = frac{1}{a^{3}}int_{1}^{infty}ln^{2}t,e^{-bt},mathrm{d}t = frac{1}{a^{3}}left[int_{0}^{infty}ln^{2}t,e^{-bt},mathrm{d}t - int_{0}^{1}ln^{2}t, e^{-bt},mathrm{d}tright] = frac{1}{a^{3}}(A_{1} - A_{2}) $$



                      The first one can be done by considering the series expansion



                      $$begin{aligned} int_{0}^{infty}t^{epsilon}e^{-bt},mathrm{d}t &= sum_{n=0}^{infty}frac{epsilon^{n}}{n!}int_{0}^{infty}ln^{n}t,e^{-bt},mathrm{d}t \
                      &= frac{1}{b^{1+epsilon}}int_{0}^{infty}t^{epsilon}e^{-t},mathrm{d}t = frac{Gamma(1+epsilon)}{b^{1+epsilon}}end{aligned}$$



                      and expanding the latter term to second order in $epsilon$. The integral will then be $2! = 2$ times the coefficient of the $epsilon^{2}$ term to compensate for the factorial. Using the Taylor expansion



                      $$ lnGamma(1+epsilon) = -gammaepsilon + sum_{k=2}^{infty}frac{(-1)^{k}zeta(k)}{k}epsilon^{k},$$



                      we have



                      $$begin{aligned} frac{Gamma(1+epsilon)}{b^{1+epsilon}} &approx frac{e^{-gammaepsilon + frac{zeta(2)}{2}epsilon^{2}}}{be^{epsilonln b}}
                      approx frac{1}{b}left(1 - epsilonln b + frac{ln^{2}b}{2}epsilon^{2}right)left(1 - gammaepsilon + frac{zeta(2)}{2}epsilon^{2} + frac{gamma^{2}}{2}epsilon^{2}right) \
                      &approx frac{1}{b}left(1 + left(-gamma - ln bright)epsilon +left(frac{zeta(2)}{2} + frac{gamma^{2}}{2} + gammaln b + frac{ln^{2}b}{2}right)epsilon^{2}right)end{aligned}$$



                      so



                      $$ A_{1} = frac{1}{b}left(zeta(2) + gamma^{2} + 2gammaln b + ln^{2}bright). $$



                      The second integral can be done using series again, but I am not sure if it has a nice expression. I write it in terms of hypergeometric functions. The Taylor series of the exponential is used. (Note I can switch sum and integral because $int_{0}^{1}t^{k}ln^{2}t,mathrm{d}t$ certainly converges for any whole number $k$, as the divergence of $ln^{2}t$ is weak)



                      $$ A_{2} = int_{0}^{1}ln^{2}t,sum_{k=0}^{infty}frac{(-1)^{k}b^{k}t^{k}}{k!},mathrm{d}t = sum_{k=0}^{infty}frac{(-1)^{k}b^{k}}{k!}int_{0}^{1}t^{k}ln^{2}t,mathrm{d}t $$



                      Consider



                      $$ int_{0}^{1}t^{k+epsilon},mathrm{d}t = sum_{n=0}^{infty}frac{epsilon^{n}}{n!}int_{0}^{1}t^{k}ln^{n}t,mathrm{d}t = frac{1}{k+epsilon+1}$$



                      where we are again finding the $epsilon^{2}$ coefficient. It follows that



                      $$ frac{1}{1+k+epsilon} = frac{1}{1+k}frac{1}{1+frac{epsilon}{1+k}} = frac{1}{1+k}sum_{j=0}^{infty}(-1)^{j}left(frac{epsilon}{1+k}right)^{j}$$



                      so



                      $$ int_{0}^{1}t^{k}ln^{2}t,mathrm{d}t = frac{2}{(1+k)^{3}} quadtoquad A_{2} = sum_{k=0}^{infty}frac{(-1)^{k}b^{k}}{k!}frac{2}{(1+k)^{3}} = 2,{}_{3}F_{3}(1,1,1;2,2,2;-b).$$






                      share|cite|improve this answer











                      $endgroup$


















                        2












                        $begingroup$

                        The integral you call $A$ can be split into two integrals.



                        $$ A = frac{1}{a^{3}}int_{1}^{infty}ln^{2}t,e^{-bt},mathrm{d}t = frac{1}{a^{3}}left[int_{0}^{infty}ln^{2}t,e^{-bt},mathrm{d}t - int_{0}^{1}ln^{2}t, e^{-bt},mathrm{d}tright] = frac{1}{a^{3}}(A_{1} - A_{2}) $$



                        The first one can be done by considering the series expansion



                        $$begin{aligned} int_{0}^{infty}t^{epsilon}e^{-bt},mathrm{d}t &= sum_{n=0}^{infty}frac{epsilon^{n}}{n!}int_{0}^{infty}ln^{n}t,e^{-bt},mathrm{d}t \
                        &= frac{1}{b^{1+epsilon}}int_{0}^{infty}t^{epsilon}e^{-t},mathrm{d}t = frac{Gamma(1+epsilon)}{b^{1+epsilon}}end{aligned}$$



                        and expanding the latter term to second order in $epsilon$. The integral will then be $2! = 2$ times the coefficient of the $epsilon^{2}$ term to compensate for the factorial. Using the Taylor expansion



                        $$ lnGamma(1+epsilon) = -gammaepsilon + sum_{k=2}^{infty}frac{(-1)^{k}zeta(k)}{k}epsilon^{k},$$



                        we have



                        $$begin{aligned} frac{Gamma(1+epsilon)}{b^{1+epsilon}} &approx frac{e^{-gammaepsilon + frac{zeta(2)}{2}epsilon^{2}}}{be^{epsilonln b}}
                        approx frac{1}{b}left(1 - epsilonln b + frac{ln^{2}b}{2}epsilon^{2}right)left(1 - gammaepsilon + frac{zeta(2)}{2}epsilon^{2} + frac{gamma^{2}}{2}epsilon^{2}right) \
                        &approx frac{1}{b}left(1 + left(-gamma - ln bright)epsilon +left(frac{zeta(2)}{2} + frac{gamma^{2}}{2} + gammaln b + frac{ln^{2}b}{2}right)epsilon^{2}right)end{aligned}$$



                        so



                        $$ A_{1} = frac{1}{b}left(zeta(2) + gamma^{2} + 2gammaln b + ln^{2}bright). $$



                        The second integral can be done using series again, but I am not sure if it has a nice expression. I write it in terms of hypergeometric functions. The Taylor series of the exponential is used. (Note I can switch sum and integral because $int_{0}^{1}t^{k}ln^{2}t,mathrm{d}t$ certainly converges for any whole number $k$, as the divergence of $ln^{2}t$ is weak)



                        $$ A_{2} = int_{0}^{1}ln^{2}t,sum_{k=0}^{infty}frac{(-1)^{k}b^{k}t^{k}}{k!},mathrm{d}t = sum_{k=0}^{infty}frac{(-1)^{k}b^{k}}{k!}int_{0}^{1}t^{k}ln^{2}t,mathrm{d}t $$



                        Consider



                        $$ int_{0}^{1}t^{k+epsilon},mathrm{d}t = sum_{n=0}^{infty}frac{epsilon^{n}}{n!}int_{0}^{1}t^{k}ln^{n}t,mathrm{d}t = frac{1}{k+epsilon+1}$$



                        where we are again finding the $epsilon^{2}$ coefficient. It follows that



                        $$ frac{1}{1+k+epsilon} = frac{1}{1+k}frac{1}{1+frac{epsilon}{1+k}} = frac{1}{1+k}sum_{j=0}^{infty}(-1)^{j}left(frac{epsilon}{1+k}right)^{j}$$



                        so



                        $$ int_{0}^{1}t^{k}ln^{2}t,mathrm{d}t = frac{2}{(1+k)^{3}} quadtoquad A_{2} = sum_{k=0}^{infty}frac{(-1)^{k}b^{k}}{k!}frac{2}{(1+k)^{3}} = 2,{}_{3}F_{3}(1,1,1;2,2,2;-b).$$






                        share|cite|improve this answer











                        $endgroup$
















                          2












                          2








                          2





                          $begingroup$

                          The integral you call $A$ can be split into two integrals.



                          $$ A = frac{1}{a^{3}}int_{1}^{infty}ln^{2}t,e^{-bt},mathrm{d}t = frac{1}{a^{3}}left[int_{0}^{infty}ln^{2}t,e^{-bt},mathrm{d}t - int_{0}^{1}ln^{2}t, e^{-bt},mathrm{d}tright] = frac{1}{a^{3}}(A_{1} - A_{2}) $$



                          The first one can be done by considering the series expansion



                          $$begin{aligned} int_{0}^{infty}t^{epsilon}e^{-bt},mathrm{d}t &= sum_{n=0}^{infty}frac{epsilon^{n}}{n!}int_{0}^{infty}ln^{n}t,e^{-bt},mathrm{d}t \
                          &= frac{1}{b^{1+epsilon}}int_{0}^{infty}t^{epsilon}e^{-t},mathrm{d}t = frac{Gamma(1+epsilon)}{b^{1+epsilon}}end{aligned}$$



                          and expanding the latter term to second order in $epsilon$. The integral will then be $2! = 2$ times the coefficient of the $epsilon^{2}$ term to compensate for the factorial. Using the Taylor expansion



                          $$ lnGamma(1+epsilon) = -gammaepsilon + sum_{k=2}^{infty}frac{(-1)^{k}zeta(k)}{k}epsilon^{k},$$



                          we have



                          $$begin{aligned} frac{Gamma(1+epsilon)}{b^{1+epsilon}} &approx frac{e^{-gammaepsilon + frac{zeta(2)}{2}epsilon^{2}}}{be^{epsilonln b}}
                          approx frac{1}{b}left(1 - epsilonln b + frac{ln^{2}b}{2}epsilon^{2}right)left(1 - gammaepsilon + frac{zeta(2)}{2}epsilon^{2} + frac{gamma^{2}}{2}epsilon^{2}right) \
                          &approx frac{1}{b}left(1 + left(-gamma - ln bright)epsilon +left(frac{zeta(2)}{2} + frac{gamma^{2}}{2} + gammaln b + frac{ln^{2}b}{2}right)epsilon^{2}right)end{aligned}$$



                          so



                          $$ A_{1} = frac{1}{b}left(zeta(2) + gamma^{2} + 2gammaln b + ln^{2}bright). $$



                          The second integral can be done using series again, but I am not sure if it has a nice expression. I write it in terms of hypergeometric functions. The Taylor series of the exponential is used. (Note I can switch sum and integral because $int_{0}^{1}t^{k}ln^{2}t,mathrm{d}t$ certainly converges for any whole number $k$, as the divergence of $ln^{2}t$ is weak)



                          $$ A_{2} = int_{0}^{1}ln^{2}t,sum_{k=0}^{infty}frac{(-1)^{k}b^{k}t^{k}}{k!},mathrm{d}t = sum_{k=0}^{infty}frac{(-1)^{k}b^{k}}{k!}int_{0}^{1}t^{k}ln^{2}t,mathrm{d}t $$



                          Consider



                          $$ int_{0}^{1}t^{k+epsilon},mathrm{d}t = sum_{n=0}^{infty}frac{epsilon^{n}}{n!}int_{0}^{1}t^{k}ln^{n}t,mathrm{d}t = frac{1}{k+epsilon+1}$$



                          where we are again finding the $epsilon^{2}$ coefficient. It follows that



                          $$ frac{1}{1+k+epsilon} = frac{1}{1+k}frac{1}{1+frac{epsilon}{1+k}} = frac{1}{1+k}sum_{j=0}^{infty}(-1)^{j}left(frac{epsilon}{1+k}right)^{j}$$



                          so



                          $$ int_{0}^{1}t^{k}ln^{2}t,mathrm{d}t = frac{2}{(1+k)^{3}} quadtoquad A_{2} = sum_{k=0}^{infty}frac{(-1)^{k}b^{k}}{k!}frac{2}{(1+k)^{3}} = 2,{}_{3}F_{3}(1,1,1;2,2,2;-b).$$






                          share|cite|improve this answer











                          $endgroup$



                          The integral you call $A$ can be split into two integrals.



                          $$ A = frac{1}{a^{3}}int_{1}^{infty}ln^{2}t,e^{-bt},mathrm{d}t = frac{1}{a^{3}}left[int_{0}^{infty}ln^{2}t,e^{-bt},mathrm{d}t - int_{0}^{1}ln^{2}t, e^{-bt},mathrm{d}tright] = frac{1}{a^{3}}(A_{1} - A_{2}) $$



                          The first one can be done by considering the series expansion



                          $$begin{aligned} int_{0}^{infty}t^{epsilon}e^{-bt},mathrm{d}t &= sum_{n=0}^{infty}frac{epsilon^{n}}{n!}int_{0}^{infty}ln^{n}t,e^{-bt},mathrm{d}t \
                          &= frac{1}{b^{1+epsilon}}int_{0}^{infty}t^{epsilon}e^{-t},mathrm{d}t = frac{Gamma(1+epsilon)}{b^{1+epsilon}}end{aligned}$$



                          and expanding the latter term to second order in $epsilon$. The integral will then be $2! = 2$ times the coefficient of the $epsilon^{2}$ term to compensate for the factorial. Using the Taylor expansion



                          $$ lnGamma(1+epsilon) = -gammaepsilon + sum_{k=2}^{infty}frac{(-1)^{k}zeta(k)}{k}epsilon^{k},$$



                          we have



                          $$begin{aligned} frac{Gamma(1+epsilon)}{b^{1+epsilon}} &approx frac{e^{-gammaepsilon + frac{zeta(2)}{2}epsilon^{2}}}{be^{epsilonln b}}
                          approx frac{1}{b}left(1 - epsilonln b + frac{ln^{2}b}{2}epsilon^{2}right)left(1 - gammaepsilon + frac{zeta(2)}{2}epsilon^{2} + frac{gamma^{2}}{2}epsilon^{2}right) \
                          &approx frac{1}{b}left(1 + left(-gamma - ln bright)epsilon +left(frac{zeta(2)}{2} + frac{gamma^{2}}{2} + gammaln b + frac{ln^{2}b}{2}right)epsilon^{2}right)end{aligned}$$



                          so



                          $$ A_{1} = frac{1}{b}left(zeta(2) + gamma^{2} + 2gammaln b + ln^{2}bright). $$



                          The second integral can be done using series again, but I am not sure if it has a nice expression. I write it in terms of hypergeometric functions. The Taylor series of the exponential is used. (Note I can switch sum and integral because $int_{0}^{1}t^{k}ln^{2}t,mathrm{d}t$ certainly converges for any whole number $k$, as the divergence of $ln^{2}t$ is weak)



                          $$ A_{2} = int_{0}^{1}ln^{2}t,sum_{k=0}^{infty}frac{(-1)^{k}b^{k}t^{k}}{k!},mathrm{d}t = sum_{k=0}^{infty}frac{(-1)^{k}b^{k}}{k!}int_{0}^{1}t^{k}ln^{2}t,mathrm{d}t $$



                          Consider



                          $$ int_{0}^{1}t^{k+epsilon},mathrm{d}t = sum_{n=0}^{infty}frac{epsilon^{n}}{n!}int_{0}^{1}t^{k}ln^{n}t,mathrm{d}t = frac{1}{k+epsilon+1}$$



                          where we are again finding the $epsilon^{2}$ coefficient. It follows that



                          $$ frac{1}{1+k+epsilon} = frac{1}{1+k}frac{1}{1+frac{epsilon}{1+k}} = frac{1}{1+k}sum_{j=0}^{infty}(-1)^{j}left(frac{epsilon}{1+k}right)^{j}$$



                          so



                          $$ int_{0}^{1}t^{k}ln^{2}t,mathrm{d}t = frac{2}{(1+k)^{3}} quadtoquad A_{2} = sum_{k=0}^{infty}frac{(-1)^{k}b^{k}}{k!}frac{2}{(1+k)^{3}} = 2,{}_{3}F_{3}(1,1,1;2,2,2;-b).$$







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited Dec 29 '18 at 3:12

























                          answered Dec 29 '18 at 0:43









                          IninterrompueIninterrompue

                          64519




                          64519






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055365%2fevaluate-integral-of-lnu-exp-bu-u-du%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              1300-talet

                              1300-talet

                              Display a custom attribute below product name in the front-end Magento 1.9.3.8