How to find orthogonal eigenvectors if some of the eigenvalues are the same?












4












$begingroup$


I have an example:
$$A=begin{pmatrix} 2 & 2 & 4 \ 2 & 5 & 8 \ 4 & 8 & 17 end{pmatrix}$$
The eigenvalue I found is $lambda_1=lambda_2=1$ and $lambda_3=22$.

For $lambda=1$,
$$begin{pmatrix} x\ y \ z end{pmatrix}=begin{pmatrix} -2\ 1 \ 0 end{pmatrix}y+begin{pmatrix} -4\ 0 \ 1 end{pmatrix}z$$
For $lambda=22$,
$$begin{pmatrix} x\ y \ z end{pmatrix}=begin{pmatrix} 1/4\ 1/2 \ 1 end{pmatrix}z$$
However, those eigenvectors I found are not orthogonal to each other. The goal is to find an orthogonal matrix P and diagonal matrix Q so that $A=PQP^T$.










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Not every matrix is diagonalizable (I'm responding to your last sentence, last paragraph).
    $endgroup$
    – stressed out
    Jan 5 at 5:43












  • $begingroup$
    @stressedout Yes, I do know that. I mean in this problem I need to find the corresponding P and Q matrix
    $endgroup$
    – Yibei He
    Jan 5 at 6:01










  • $begingroup$
    @stressed out: This is a real symmetric matrix. Those are always diagonalizable, and we can always choose orthogonal eigenvectors.
    $endgroup$
    – jmerry
    Jan 5 at 6:12










  • $begingroup$
    @jmerry That's right. I didn't check the matrix to see that it's symmetric.
    $endgroup$
    – stressed out
    Jan 5 at 6:14










  • $begingroup$
    Here's a possible solution: $A$ is symmetric and you have two distinct eigenvalues. So, you get two orthogonal eigenvectors. Since your vectors are $3$-dimensional, get the third one using cross-product.
    $endgroup$
    – stressed out
    Jan 5 at 6:17


















4












$begingroup$


I have an example:
$$A=begin{pmatrix} 2 & 2 & 4 \ 2 & 5 & 8 \ 4 & 8 & 17 end{pmatrix}$$
The eigenvalue I found is $lambda_1=lambda_2=1$ and $lambda_3=22$.

For $lambda=1$,
$$begin{pmatrix} x\ y \ z end{pmatrix}=begin{pmatrix} -2\ 1 \ 0 end{pmatrix}y+begin{pmatrix} -4\ 0 \ 1 end{pmatrix}z$$
For $lambda=22$,
$$begin{pmatrix} x\ y \ z end{pmatrix}=begin{pmatrix} 1/4\ 1/2 \ 1 end{pmatrix}z$$
However, those eigenvectors I found are not orthogonal to each other. The goal is to find an orthogonal matrix P and diagonal matrix Q so that $A=PQP^T$.










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Not every matrix is diagonalizable (I'm responding to your last sentence, last paragraph).
    $endgroup$
    – stressed out
    Jan 5 at 5:43












  • $begingroup$
    @stressedout Yes, I do know that. I mean in this problem I need to find the corresponding P and Q matrix
    $endgroup$
    – Yibei He
    Jan 5 at 6:01










  • $begingroup$
    @stressed out: This is a real symmetric matrix. Those are always diagonalizable, and we can always choose orthogonal eigenvectors.
    $endgroup$
    – jmerry
    Jan 5 at 6:12










  • $begingroup$
    @jmerry That's right. I didn't check the matrix to see that it's symmetric.
    $endgroup$
    – stressed out
    Jan 5 at 6:14










  • $begingroup$
    Here's a possible solution: $A$ is symmetric and you have two distinct eigenvalues. So, you get two orthogonal eigenvectors. Since your vectors are $3$-dimensional, get the third one using cross-product.
    $endgroup$
    – stressed out
    Jan 5 at 6:17
















4












4








4


1



$begingroup$


I have an example:
$$A=begin{pmatrix} 2 & 2 & 4 \ 2 & 5 & 8 \ 4 & 8 & 17 end{pmatrix}$$
The eigenvalue I found is $lambda_1=lambda_2=1$ and $lambda_3=22$.

For $lambda=1$,
$$begin{pmatrix} x\ y \ z end{pmatrix}=begin{pmatrix} -2\ 1 \ 0 end{pmatrix}y+begin{pmatrix} -4\ 0 \ 1 end{pmatrix}z$$
For $lambda=22$,
$$begin{pmatrix} x\ y \ z end{pmatrix}=begin{pmatrix} 1/4\ 1/2 \ 1 end{pmatrix}z$$
However, those eigenvectors I found are not orthogonal to each other. The goal is to find an orthogonal matrix P and diagonal matrix Q so that $A=PQP^T$.










share|cite|improve this question









$endgroup$




I have an example:
$$A=begin{pmatrix} 2 & 2 & 4 \ 2 & 5 & 8 \ 4 & 8 & 17 end{pmatrix}$$
The eigenvalue I found is $lambda_1=lambda_2=1$ and $lambda_3=22$.

For $lambda=1$,
$$begin{pmatrix} x\ y \ z end{pmatrix}=begin{pmatrix} -2\ 1 \ 0 end{pmatrix}y+begin{pmatrix} -4\ 0 \ 1 end{pmatrix}z$$
For $lambda=22$,
$$begin{pmatrix} x\ y \ z end{pmatrix}=begin{pmatrix} 1/4\ 1/2 \ 1 end{pmatrix}z$$
However, those eigenvectors I found are not orthogonal to each other. The goal is to find an orthogonal matrix P and diagonal matrix Q so that $A=PQP^T$.







linear-algebra eigenvalues-eigenvectors






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 5 at 5:38









Yibei HeYibei He

1168




1168








  • 1




    $begingroup$
    Not every matrix is diagonalizable (I'm responding to your last sentence, last paragraph).
    $endgroup$
    – stressed out
    Jan 5 at 5:43












  • $begingroup$
    @stressedout Yes, I do know that. I mean in this problem I need to find the corresponding P and Q matrix
    $endgroup$
    – Yibei He
    Jan 5 at 6:01










  • $begingroup$
    @stressed out: This is a real symmetric matrix. Those are always diagonalizable, and we can always choose orthogonal eigenvectors.
    $endgroup$
    – jmerry
    Jan 5 at 6:12










  • $begingroup$
    @jmerry That's right. I didn't check the matrix to see that it's symmetric.
    $endgroup$
    – stressed out
    Jan 5 at 6:14










  • $begingroup$
    Here's a possible solution: $A$ is symmetric and you have two distinct eigenvalues. So, you get two orthogonal eigenvectors. Since your vectors are $3$-dimensional, get the third one using cross-product.
    $endgroup$
    – stressed out
    Jan 5 at 6:17
















  • 1




    $begingroup$
    Not every matrix is diagonalizable (I'm responding to your last sentence, last paragraph).
    $endgroup$
    – stressed out
    Jan 5 at 5:43












  • $begingroup$
    @stressedout Yes, I do know that. I mean in this problem I need to find the corresponding P and Q matrix
    $endgroup$
    – Yibei He
    Jan 5 at 6:01










  • $begingroup$
    @stressed out: This is a real symmetric matrix. Those are always diagonalizable, and we can always choose orthogonal eigenvectors.
    $endgroup$
    – jmerry
    Jan 5 at 6:12










  • $begingroup$
    @jmerry That's right. I didn't check the matrix to see that it's symmetric.
    $endgroup$
    – stressed out
    Jan 5 at 6:14










  • $begingroup$
    Here's a possible solution: $A$ is symmetric and you have two distinct eigenvalues. So, you get two orthogonal eigenvectors. Since your vectors are $3$-dimensional, get the third one using cross-product.
    $endgroup$
    – stressed out
    Jan 5 at 6:17










1




1




$begingroup$
Not every matrix is diagonalizable (I'm responding to your last sentence, last paragraph).
$endgroup$
– stressed out
Jan 5 at 5:43






$begingroup$
Not every matrix is diagonalizable (I'm responding to your last sentence, last paragraph).
$endgroup$
– stressed out
Jan 5 at 5:43














$begingroup$
@stressedout Yes, I do know that. I mean in this problem I need to find the corresponding P and Q matrix
$endgroup$
– Yibei He
Jan 5 at 6:01




$begingroup$
@stressedout Yes, I do know that. I mean in this problem I need to find the corresponding P and Q matrix
$endgroup$
– Yibei He
Jan 5 at 6:01












$begingroup$
@stressed out: This is a real symmetric matrix. Those are always diagonalizable, and we can always choose orthogonal eigenvectors.
$endgroup$
– jmerry
Jan 5 at 6:12




$begingroup$
@stressed out: This is a real symmetric matrix. Those are always diagonalizable, and we can always choose orthogonal eigenvectors.
$endgroup$
– jmerry
Jan 5 at 6:12












$begingroup$
@jmerry That's right. I didn't check the matrix to see that it's symmetric.
$endgroup$
– stressed out
Jan 5 at 6:14




$begingroup$
@jmerry That's right. I didn't check the matrix to see that it's symmetric.
$endgroup$
– stressed out
Jan 5 at 6:14












$begingroup$
Here's a possible solution: $A$ is symmetric and you have two distinct eigenvalues. So, you get two orthogonal eigenvectors. Since your vectors are $3$-dimensional, get the third one using cross-product.
$endgroup$
– stressed out
Jan 5 at 6:17






$begingroup$
Here's a possible solution: $A$ is symmetric and you have two distinct eigenvalues. So, you get two orthogonal eigenvectors. Since your vectors are $3$-dimensional, get the third one using cross-product.
$endgroup$
– stressed out
Jan 5 at 6:17












3 Answers
3






active

oldest

votes


















2












$begingroup$

One thing we know is that eigenvectors of a symmetric matrix corresponding to distinct eigenvalues are orthogonal. So, if we find eigenvectors $v_1,v_2,v_3$ for $lambda_1< lambda_2< lambda_3$ we are done. On the other hand, we have eigenvalues $lambda_1=lambda_2=1$ and $lambda_3=22$, so that there are not $3$ distinct eigenvalues and the situation becomes somewhat more complicated.



Suppose we found $v_1,v_2in E(A,lambda_1)$ which are linearly independent (and hence a basis for the Eigenspace). We know that $v_1perp v_3$ and $v_2perp v_3$. This means $langle v_1,v_3rangle=langle v_2,v_3rangle=0$. By bilinearity of the inner product, we get that $langle av_1+bv_2,v_3rangle =0$ for all $a,bin mathbb{R}$. The upshot is that the entire eigenspace $E(A,lambda_1)$ is orthogonal to $v_3$. So, we are free to choose any basis of eigenvectors for $E(A,lambda_1)$ and proceed from there. Well, just apply Gram-Schmidt to $v_1,v_2$. Define
$$ u_1=frac{v_1}{lVert v_1rVert}$$
$$ u_2=frac{v_2-langle v_2, u_1rangle u_1}{lVert v_2-langle v_2, u_1rangle u_1rVert}.$$
A quick check shows that these two vectors form an orthonormal basis for $E(A,lambda_1)$. Then, if we take any nonzero $v_3in E(A,lambda_3)$ and set
$$ u_3=frac{v_3}{lVert v_3rVert}$$
we can see that $(u_1,u_2,u_3)$is an orthonormal eigenbasis of $mathbb{R}^3cong E(lambda_1,A)oplus E(lambda_3,A)$ with respect to $A$. You've already found the vectors $v_1,v_2,v_3$. Once you compute $u_1,u_2,u_3$, the matrix $P=[u_1,u_2,u_3]$ is orthogonal and
$$
A=P^T
begin{bmatrix}
1&0&0\
0&1&0\
0&0&22
end{bmatrix}
P.
$$






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    We know that the eigenvectors corresponding to different eigenvalues of a symmetric matrix are orthogonal. You have two different eigenvalues, hence you have two orthogonal eigenvectors $v_1$ and $v_2$. Since your matrix is $3times 3$, the third vector to form $P=[v_1 | v_2 |v_3]$ has to be $v_3=pm v_1times v_2$. It is easy to see that $PP^T=I$.



    Now just take $Q=mathrm{diag}(lambda_1,lambda_2,lambda_3)$ and solve $A=PQP^T$ to determine $Q$ completely and then you're done.






    share|cite|improve this answer









    $endgroup$





















      0












      $begingroup$

      How about Gram-Schmidt? Since the eigenspace is $2$-dimensional, there are certainly $2$ such.



      Project and subtract: $(-4,0,1)-8frac15(-2,1,0)= (-frac45,-frac85,1)$.



      Now normalize: $frac5{23}(-frac45,-frac85,1)=(-frac4{23},-frac8{23},frac5{23}):=b_1$. And $(-frac2{sqrt5},frac1{sqrt5},0):=b_2$.



      Finally, normalize the eigenvector for $lambda =22$:
      $frac{16}{21}(frac14,frac12,1)=(frac4{21},frac8{21},frac{16}{21}):=b_3$. Conveniently, this one is orthogonal to the others by symmetry of the matrix.



      (Alternatively, the cross-product would have been a good way to do this as well.)



      Finally, the matrix $P$ whose columns are the basis vectors, $b_1,b_2,b_3$, above will do the trick: $P^tAP=begin{pmatrix}1&0&0\0&1&0\0&0&22end{pmatrix}$.






      share|cite|improve this answer











      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062424%2fhow-to-find-orthogonal-eigenvectors-if-some-of-the-eigenvalues-are-the-same%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        2












        $begingroup$

        One thing we know is that eigenvectors of a symmetric matrix corresponding to distinct eigenvalues are orthogonal. So, if we find eigenvectors $v_1,v_2,v_3$ for $lambda_1< lambda_2< lambda_3$ we are done. On the other hand, we have eigenvalues $lambda_1=lambda_2=1$ and $lambda_3=22$, so that there are not $3$ distinct eigenvalues and the situation becomes somewhat more complicated.



        Suppose we found $v_1,v_2in E(A,lambda_1)$ which are linearly independent (and hence a basis for the Eigenspace). We know that $v_1perp v_3$ and $v_2perp v_3$. This means $langle v_1,v_3rangle=langle v_2,v_3rangle=0$. By bilinearity of the inner product, we get that $langle av_1+bv_2,v_3rangle =0$ for all $a,bin mathbb{R}$. The upshot is that the entire eigenspace $E(A,lambda_1)$ is orthogonal to $v_3$. So, we are free to choose any basis of eigenvectors for $E(A,lambda_1)$ and proceed from there. Well, just apply Gram-Schmidt to $v_1,v_2$. Define
        $$ u_1=frac{v_1}{lVert v_1rVert}$$
        $$ u_2=frac{v_2-langle v_2, u_1rangle u_1}{lVert v_2-langle v_2, u_1rangle u_1rVert}.$$
        A quick check shows that these two vectors form an orthonormal basis for $E(A,lambda_1)$. Then, if we take any nonzero $v_3in E(A,lambda_3)$ and set
        $$ u_3=frac{v_3}{lVert v_3rVert}$$
        we can see that $(u_1,u_2,u_3)$is an orthonormal eigenbasis of $mathbb{R}^3cong E(lambda_1,A)oplus E(lambda_3,A)$ with respect to $A$. You've already found the vectors $v_1,v_2,v_3$. Once you compute $u_1,u_2,u_3$, the matrix $P=[u_1,u_2,u_3]$ is orthogonal and
        $$
        A=P^T
        begin{bmatrix}
        1&0&0\
        0&1&0\
        0&0&22
        end{bmatrix}
        P.
        $$






        share|cite|improve this answer









        $endgroup$


















          2












          $begingroup$

          One thing we know is that eigenvectors of a symmetric matrix corresponding to distinct eigenvalues are orthogonal. So, if we find eigenvectors $v_1,v_2,v_3$ for $lambda_1< lambda_2< lambda_3$ we are done. On the other hand, we have eigenvalues $lambda_1=lambda_2=1$ and $lambda_3=22$, so that there are not $3$ distinct eigenvalues and the situation becomes somewhat more complicated.



          Suppose we found $v_1,v_2in E(A,lambda_1)$ which are linearly independent (and hence a basis for the Eigenspace). We know that $v_1perp v_3$ and $v_2perp v_3$. This means $langle v_1,v_3rangle=langle v_2,v_3rangle=0$. By bilinearity of the inner product, we get that $langle av_1+bv_2,v_3rangle =0$ for all $a,bin mathbb{R}$. The upshot is that the entire eigenspace $E(A,lambda_1)$ is orthogonal to $v_3$. So, we are free to choose any basis of eigenvectors for $E(A,lambda_1)$ and proceed from there. Well, just apply Gram-Schmidt to $v_1,v_2$. Define
          $$ u_1=frac{v_1}{lVert v_1rVert}$$
          $$ u_2=frac{v_2-langle v_2, u_1rangle u_1}{lVert v_2-langle v_2, u_1rangle u_1rVert}.$$
          A quick check shows that these two vectors form an orthonormal basis for $E(A,lambda_1)$. Then, if we take any nonzero $v_3in E(A,lambda_3)$ and set
          $$ u_3=frac{v_3}{lVert v_3rVert}$$
          we can see that $(u_1,u_2,u_3)$is an orthonormal eigenbasis of $mathbb{R}^3cong E(lambda_1,A)oplus E(lambda_3,A)$ with respect to $A$. You've already found the vectors $v_1,v_2,v_3$. Once you compute $u_1,u_2,u_3$, the matrix $P=[u_1,u_2,u_3]$ is orthogonal and
          $$
          A=P^T
          begin{bmatrix}
          1&0&0\
          0&1&0\
          0&0&22
          end{bmatrix}
          P.
          $$






          share|cite|improve this answer









          $endgroup$
















            2












            2








            2





            $begingroup$

            One thing we know is that eigenvectors of a symmetric matrix corresponding to distinct eigenvalues are orthogonal. So, if we find eigenvectors $v_1,v_2,v_3$ for $lambda_1< lambda_2< lambda_3$ we are done. On the other hand, we have eigenvalues $lambda_1=lambda_2=1$ and $lambda_3=22$, so that there are not $3$ distinct eigenvalues and the situation becomes somewhat more complicated.



            Suppose we found $v_1,v_2in E(A,lambda_1)$ which are linearly independent (and hence a basis for the Eigenspace). We know that $v_1perp v_3$ and $v_2perp v_3$. This means $langle v_1,v_3rangle=langle v_2,v_3rangle=0$. By bilinearity of the inner product, we get that $langle av_1+bv_2,v_3rangle =0$ for all $a,bin mathbb{R}$. The upshot is that the entire eigenspace $E(A,lambda_1)$ is orthogonal to $v_3$. So, we are free to choose any basis of eigenvectors for $E(A,lambda_1)$ and proceed from there. Well, just apply Gram-Schmidt to $v_1,v_2$. Define
            $$ u_1=frac{v_1}{lVert v_1rVert}$$
            $$ u_2=frac{v_2-langle v_2, u_1rangle u_1}{lVert v_2-langle v_2, u_1rangle u_1rVert}.$$
            A quick check shows that these two vectors form an orthonormal basis for $E(A,lambda_1)$. Then, if we take any nonzero $v_3in E(A,lambda_3)$ and set
            $$ u_3=frac{v_3}{lVert v_3rVert}$$
            we can see that $(u_1,u_2,u_3)$is an orthonormal eigenbasis of $mathbb{R}^3cong E(lambda_1,A)oplus E(lambda_3,A)$ with respect to $A$. You've already found the vectors $v_1,v_2,v_3$. Once you compute $u_1,u_2,u_3$, the matrix $P=[u_1,u_2,u_3]$ is orthogonal and
            $$
            A=P^T
            begin{bmatrix}
            1&0&0\
            0&1&0\
            0&0&22
            end{bmatrix}
            P.
            $$






            share|cite|improve this answer









            $endgroup$



            One thing we know is that eigenvectors of a symmetric matrix corresponding to distinct eigenvalues are orthogonal. So, if we find eigenvectors $v_1,v_2,v_3$ for $lambda_1< lambda_2< lambda_3$ we are done. On the other hand, we have eigenvalues $lambda_1=lambda_2=1$ and $lambda_3=22$, so that there are not $3$ distinct eigenvalues and the situation becomes somewhat more complicated.



            Suppose we found $v_1,v_2in E(A,lambda_1)$ which are linearly independent (and hence a basis for the Eigenspace). We know that $v_1perp v_3$ and $v_2perp v_3$. This means $langle v_1,v_3rangle=langle v_2,v_3rangle=0$. By bilinearity of the inner product, we get that $langle av_1+bv_2,v_3rangle =0$ for all $a,bin mathbb{R}$. The upshot is that the entire eigenspace $E(A,lambda_1)$ is orthogonal to $v_3$. So, we are free to choose any basis of eigenvectors for $E(A,lambda_1)$ and proceed from there. Well, just apply Gram-Schmidt to $v_1,v_2$. Define
            $$ u_1=frac{v_1}{lVert v_1rVert}$$
            $$ u_2=frac{v_2-langle v_2, u_1rangle u_1}{lVert v_2-langle v_2, u_1rangle u_1rVert}.$$
            A quick check shows that these two vectors form an orthonormal basis for $E(A,lambda_1)$. Then, if we take any nonzero $v_3in E(A,lambda_3)$ and set
            $$ u_3=frac{v_3}{lVert v_3rVert}$$
            we can see that $(u_1,u_2,u_3)$is an orthonormal eigenbasis of $mathbb{R}^3cong E(lambda_1,A)oplus E(lambda_3,A)$ with respect to $A$. You've already found the vectors $v_1,v_2,v_3$. Once you compute $u_1,u_2,u_3$, the matrix $P=[u_1,u_2,u_3]$ is orthogonal and
            $$
            A=P^T
            begin{bmatrix}
            1&0&0\
            0&1&0\
            0&0&22
            end{bmatrix}
            P.
            $$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 5 at 6:21









            Antonios-Alexandros RobotisAntonios-Alexandros Robotis

            9,71741640




            9,71741640























                0












                $begingroup$

                We know that the eigenvectors corresponding to different eigenvalues of a symmetric matrix are orthogonal. You have two different eigenvalues, hence you have two orthogonal eigenvectors $v_1$ and $v_2$. Since your matrix is $3times 3$, the third vector to form $P=[v_1 | v_2 |v_3]$ has to be $v_3=pm v_1times v_2$. It is easy to see that $PP^T=I$.



                Now just take $Q=mathrm{diag}(lambda_1,lambda_2,lambda_3)$ and solve $A=PQP^T$ to determine $Q$ completely and then you're done.






                share|cite|improve this answer









                $endgroup$


















                  0












                  $begingroup$

                  We know that the eigenvectors corresponding to different eigenvalues of a symmetric matrix are orthogonal. You have two different eigenvalues, hence you have two orthogonal eigenvectors $v_1$ and $v_2$. Since your matrix is $3times 3$, the third vector to form $P=[v_1 | v_2 |v_3]$ has to be $v_3=pm v_1times v_2$. It is easy to see that $PP^T=I$.



                  Now just take $Q=mathrm{diag}(lambda_1,lambda_2,lambda_3)$ and solve $A=PQP^T$ to determine $Q$ completely and then you're done.






                  share|cite|improve this answer









                  $endgroup$
















                    0












                    0








                    0





                    $begingroup$

                    We know that the eigenvectors corresponding to different eigenvalues of a symmetric matrix are orthogonal. You have two different eigenvalues, hence you have two orthogonal eigenvectors $v_1$ and $v_2$. Since your matrix is $3times 3$, the third vector to form $P=[v_1 | v_2 |v_3]$ has to be $v_3=pm v_1times v_2$. It is easy to see that $PP^T=I$.



                    Now just take $Q=mathrm{diag}(lambda_1,lambda_2,lambda_3)$ and solve $A=PQP^T$ to determine $Q$ completely and then you're done.






                    share|cite|improve this answer









                    $endgroup$



                    We know that the eigenvectors corresponding to different eigenvalues of a symmetric matrix are orthogonal. You have two different eigenvalues, hence you have two orthogonal eigenvectors $v_1$ and $v_2$. Since your matrix is $3times 3$, the third vector to form $P=[v_1 | v_2 |v_3]$ has to be $v_3=pm v_1times v_2$. It is easy to see that $PP^T=I$.



                    Now just take $Q=mathrm{diag}(lambda_1,lambda_2,lambda_3)$ and solve $A=PQP^T$ to determine $Q$ completely and then you're done.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 5 at 6:26









                    stressed outstressed out

                    4,0811533




                    4,0811533























                        0












                        $begingroup$

                        How about Gram-Schmidt? Since the eigenspace is $2$-dimensional, there are certainly $2$ such.



                        Project and subtract: $(-4,0,1)-8frac15(-2,1,0)= (-frac45,-frac85,1)$.



                        Now normalize: $frac5{23}(-frac45,-frac85,1)=(-frac4{23},-frac8{23},frac5{23}):=b_1$. And $(-frac2{sqrt5},frac1{sqrt5},0):=b_2$.



                        Finally, normalize the eigenvector for $lambda =22$:
                        $frac{16}{21}(frac14,frac12,1)=(frac4{21},frac8{21},frac{16}{21}):=b_3$. Conveniently, this one is orthogonal to the others by symmetry of the matrix.



                        (Alternatively, the cross-product would have been a good way to do this as well.)



                        Finally, the matrix $P$ whose columns are the basis vectors, $b_1,b_2,b_3$, above will do the trick: $P^tAP=begin{pmatrix}1&0&0\0&1&0\0&0&22end{pmatrix}$.






                        share|cite|improve this answer











                        $endgroup$


















                          0












                          $begingroup$

                          How about Gram-Schmidt? Since the eigenspace is $2$-dimensional, there are certainly $2$ such.



                          Project and subtract: $(-4,0,1)-8frac15(-2,1,0)= (-frac45,-frac85,1)$.



                          Now normalize: $frac5{23}(-frac45,-frac85,1)=(-frac4{23},-frac8{23},frac5{23}):=b_1$. And $(-frac2{sqrt5},frac1{sqrt5},0):=b_2$.



                          Finally, normalize the eigenvector for $lambda =22$:
                          $frac{16}{21}(frac14,frac12,1)=(frac4{21},frac8{21},frac{16}{21}):=b_3$. Conveniently, this one is orthogonal to the others by symmetry of the matrix.



                          (Alternatively, the cross-product would have been a good way to do this as well.)



                          Finally, the matrix $P$ whose columns are the basis vectors, $b_1,b_2,b_3$, above will do the trick: $P^tAP=begin{pmatrix}1&0&0\0&1&0\0&0&22end{pmatrix}$.






                          share|cite|improve this answer











                          $endgroup$
















                            0












                            0








                            0





                            $begingroup$

                            How about Gram-Schmidt? Since the eigenspace is $2$-dimensional, there are certainly $2$ such.



                            Project and subtract: $(-4,0,1)-8frac15(-2,1,0)= (-frac45,-frac85,1)$.



                            Now normalize: $frac5{23}(-frac45,-frac85,1)=(-frac4{23},-frac8{23},frac5{23}):=b_1$. And $(-frac2{sqrt5},frac1{sqrt5},0):=b_2$.



                            Finally, normalize the eigenvector for $lambda =22$:
                            $frac{16}{21}(frac14,frac12,1)=(frac4{21},frac8{21},frac{16}{21}):=b_3$. Conveniently, this one is orthogonal to the others by symmetry of the matrix.



                            (Alternatively, the cross-product would have been a good way to do this as well.)



                            Finally, the matrix $P$ whose columns are the basis vectors, $b_1,b_2,b_3$, above will do the trick: $P^tAP=begin{pmatrix}1&0&0\0&1&0\0&0&22end{pmatrix}$.






                            share|cite|improve this answer











                            $endgroup$



                            How about Gram-Schmidt? Since the eigenspace is $2$-dimensional, there are certainly $2$ such.



                            Project and subtract: $(-4,0,1)-8frac15(-2,1,0)= (-frac45,-frac85,1)$.



                            Now normalize: $frac5{23}(-frac45,-frac85,1)=(-frac4{23},-frac8{23},frac5{23}):=b_1$. And $(-frac2{sqrt5},frac1{sqrt5},0):=b_2$.



                            Finally, normalize the eigenvector for $lambda =22$:
                            $frac{16}{21}(frac14,frac12,1)=(frac4{21},frac8{21},frac{16}{21}):=b_3$. Conveniently, this one is orthogonal to the others by symmetry of the matrix.



                            (Alternatively, the cross-product would have been a good way to do this as well.)



                            Finally, the matrix $P$ whose columns are the basis vectors, $b_1,b_2,b_3$, above will do the trick: $P^tAP=begin{pmatrix}1&0&0\0&1&0\0&0&22end{pmatrix}$.







                            share|cite|improve this answer














                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited Jan 5 at 7:10

























                            answered Jan 5 at 6:37









                            Chris CusterChris Custer

                            11.2k3824




                            11.2k3824






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062424%2fhow-to-find-orthogonal-eigenvectors-if-some-of-the-eigenvalues-are-the-same%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                1300-talet

                                1300-talet

                                Display a custom attribute below product name in the front-end Magento 1.9.3.8