For $a=frac 14$, $f$ is continuous and differentiable.












0












$begingroup$


Let $f(x,y) =
begin{cases}
frac{xy}{(x^2+y^2)^a}, & text{if $(x,y)neq (0,0)$ } \[2ex]
0, & text{if $(x,y)= (0,0)$}
end{cases}$



Then which one of the following is TRUE for $f$ at the point $(0,0)$?



(A) For $a=1$, $f$ is continuous but not differentiable.



(B) For $a=frac 12$, $f$ is continuous and differentiable.



(C) For $a=frac 14$, $f$ is continuous and differentiable.



(D) For $a=frac 34$, $f$ is neither continuous nor differentiable



My attempt:



(A) For $a=1$ $f(x,y) =
begin{cases}
frac{xy}{(x^2+y^2)}, & text{if $(x,y)neq (0,0)$ } \[2ex]
0, & text{if $(x,y)= (0,0)$}
end{cases}$



is not continuous at $(0,0)$ as if we put $y=mx$ then $f(x,mx) =
begin{cases}
frac{m}{(1+m^2)}, & text{if $xneq 0$ } \[2ex]
0, & text{if $x= 0$}
end{cases}$



not continuous at $0$. So, (A) is not true.



(B) For $a=frac 12$ $f(x,y) =
begin{cases}
frac{xy}{(x^2+y^2)^{frac 12}}, & text{if $(x,y)neq (0,0)$ } \[2ex]
0, & text{if $(x,y)= (0,0)$}
end{cases}$



is not differentiable at $(0,0)$ as $frac {f(h,k)-f(0,0)}{sqrt{h^2+k^2}}=
frac{hk}{(h^2+k^2)}$
where $(h,k) to (0,0)$ if we put $k=mh$ then



$f(h,mh) =frac{m}{(1+m^2)} neq (0,0) $



Hence, $f$ is not differentiable at $(0,0)$. So, (B) is not true.



(C) For $a=frac 14$ $f(x,y) =
begin{cases}
frac{xy}{(x^2+y^2)^{frac 14}}, & text{if $(x,y)neq (0,0)$ } \[2ex]
0, & text{if $(x,y)= (0,0)$}
end{cases}$



Then, $f(x,y) =frac{xsqrt y}{(frac{x^2}{y^2}+1)^{frac 14}}$ Can we prove continuity of $f$ from here?



Observe, $f$ is differentiable at $(0,0)$ as $frac {f(h,k)-f(0,0)}{sqrt{h^2+k^2}}=
frac{hk}{(h^2+k^2)^frac 34}=frac{h}{(frac{h^2}{k^{4/3}}+k^{2/3})^{frac 34}} to (0,0)$
where $(h,k) to (0,0)$. So we can directly say that $f$ is differentiable and hence is continuous.



(D) For $a=frac 34$ $f(x,y) =
begin{cases}
frac{xy}{(x^2+y^2)^{frac 34}}, & text{if $(x,y)neq (0,0)$ } \[2ex]
0, & text{if $(x,y)= (0,0)$}
end{cases}$



From the observation of (C) we get $f$ is continuous at $(0,0)$ so (D) is also false.




So, my basic question is although we know that (C) will be the correct option can we prove $f$ is continuous directly there? See the highlighted portion of part (C) under My attempt section.











share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Let $f(x,y) =
    begin{cases}
    frac{xy}{(x^2+y^2)^a}, & text{if $(x,y)neq (0,0)$ } \[2ex]
    0, & text{if $(x,y)= (0,0)$}
    end{cases}$



    Then which one of the following is TRUE for $f$ at the point $(0,0)$?



    (A) For $a=1$, $f$ is continuous but not differentiable.



    (B) For $a=frac 12$, $f$ is continuous and differentiable.



    (C) For $a=frac 14$, $f$ is continuous and differentiable.



    (D) For $a=frac 34$, $f$ is neither continuous nor differentiable



    My attempt:



    (A) For $a=1$ $f(x,y) =
    begin{cases}
    frac{xy}{(x^2+y^2)}, & text{if $(x,y)neq (0,0)$ } \[2ex]
    0, & text{if $(x,y)= (0,0)$}
    end{cases}$



    is not continuous at $(0,0)$ as if we put $y=mx$ then $f(x,mx) =
    begin{cases}
    frac{m}{(1+m^2)}, & text{if $xneq 0$ } \[2ex]
    0, & text{if $x= 0$}
    end{cases}$



    not continuous at $0$. So, (A) is not true.



    (B) For $a=frac 12$ $f(x,y) =
    begin{cases}
    frac{xy}{(x^2+y^2)^{frac 12}}, & text{if $(x,y)neq (0,0)$ } \[2ex]
    0, & text{if $(x,y)= (0,0)$}
    end{cases}$



    is not differentiable at $(0,0)$ as $frac {f(h,k)-f(0,0)}{sqrt{h^2+k^2}}=
    frac{hk}{(h^2+k^2)}$
    where $(h,k) to (0,0)$ if we put $k=mh$ then



    $f(h,mh) =frac{m}{(1+m^2)} neq (0,0) $



    Hence, $f$ is not differentiable at $(0,0)$. So, (B) is not true.



    (C) For $a=frac 14$ $f(x,y) =
    begin{cases}
    frac{xy}{(x^2+y^2)^{frac 14}}, & text{if $(x,y)neq (0,0)$ } \[2ex]
    0, & text{if $(x,y)= (0,0)$}
    end{cases}$



    Then, $f(x,y) =frac{xsqrt y}{(frac{x^2}{y^2}+1)^{frac 14}}$ Can we prove continuity of $f$ from here?



    Observe, $f$ is differentiable at $(0,0)$ as $frac {f(h,k)-f(0,0)}{sqrt{h^2+k^2}}=
    frac{hk}{(h^2+k^2)^frac 34}=frac{h}{(frac{h^2}{k^{4/3}}+k^{2/3})^{frac 34}} to (0,0)$
    where $(h,k) to (0,0)$. So we can directly say that $f$ is differentiable and hence is continuous.



    (D) For $a=frac 34$ $f(x,y) =
    begin{cases}
    frac{xy}{(x^2+y^2)^{frac 34}}, & text{if $(x,y)neq (0,0)$ } \[2ex]
    0, & text{if $(x,y)= (0,0)$}
    end{cases}$



    From the observation of (C) we get $f$ is continuous at $(0,0)$ so (D) is also false.




    So, my basic question is although we know that (C) will be the correct option can we prove $f$ is continuous directly there? See the highlighted portion of part (C) under My attempt section.











    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Let $f(x,y) =
      begin{cases}
      frac{xy}{(x^2+y^2)^a}, & text{if $(x,y)neq (0,0)$ } \[2ex]
      0, & text{if $(x,y)= (0,0)$}
      end{cases}$



      Then which one of the following is TRUE for $f$ at the point $(0,0)$?



      (A) For $a=1$, $f$ is continuous but not differentiable.



      (B) For $a=frac 12$, $f$ is continuous and differentiable.



      (C) For $a=frac 14$, $f$ is continuous and differentiable.



      (D) For $a=frac 34$, $f$ is neither continuous nor differentiable



      My attempt:



      (A) For $a=1$ $f(x,y) =
      begin{cases}
      frac{xy}{(x^2+y^2)}, & text{if $(x,y)neq (0,0)$ } \[2ex]
      0, & text{if $(x,y)= (0,0)$}
      end{cases}$



      is not continuous at $(0,0)$ as if we put $y=mx$ then $f(x,mx) =
      begin{cases}
      frac{m}{(1+m^2)}, & text{if $xneq 0$ } \[2ex]
      0, & text{if $x= 0$}
      end{cases}$



      not continuous at $0$. So, (A) is not true.



      (B) For $a=frac 12$ $f(x,y) =
      begin{cases}
      frac{xy}{(x^2+y^2)^{frac 12}}, & text{if $(x,y)neq (0,0)$ } \[2ex]
      0, & text{if $(x,y)= (0,0)$}
      end{cases}$



      is not differentiable at $(0,0)$ as $frac {f(h,k)-f(0,0)}{sqrt{h^2+k^2}}=
      frac{hk}{(h^2+k^2)}$
      where $(h,k) to (0,0)$ if we put $k=mh$ then



      $f(h,mh) =frac{m}{(1+m^2)} neq (0,0) $



      Hence, $f$ is not differentiable at $(0,0)$. So, (B) is not true.



      (C) For $a=frac 14$ $f(x,y) =
      begin{cases}
      frac{xy}{(x^2+y^2)^{frac 14}}, & text{if $(x,y)neq (0,0)$ } \[2ex]
      0, & text{if $(x,y)= (0,0)$}
      end{cases}$



      Then, $f(x,y) =frac{xsqrt y}{(frac{x^2}{y^2}+1)^{frac 14}}$ Can we prove continuity of $f$ from here?



      Observe, $f$ is differentiable at $(0,0)$ as $frac {f(h,k)-f(0,0)}{sqrt{h^2+k^2}}=
      frac{hk}{(h^2+k^2)^frac 34}=frac{h}{(frac{h^2}{k^{4/3}}+k^{2/3})^{frac 34}} to (0,0)$
      where $(h,k) to (0,0)$. So we can directly say that $f$ is differentiable and hence is continuous.



      (D) For $a=frac 34$ $f(x,y) =
      begin{cases}
      frac{xy}{(x^2+y^2)^{frac 34}}, & text{if $(x,y)neq (0,0)$ } \[2ex]
      0, & text{if $(x,y)= (0,0)$}
      end{cases}$



      From the observation of (C) we get $f$ is continuous at $(0,0)$ so (D) is also false.




      So, my basic question is although we know that (C) will be the correct option can we prove $f$ is continuous directly there? See the highlighted portion of part (C) under My attempt section.











      share|cite|improve this question









      $endgroup$




      Let $f(x,y) =
      begin{cases}
      frac{xy}{(x^2+y^2)^a}, & text{if $(x,y)neq (0,0)$ } \[2ex]
      0, & text{if $(x,y)= (0,0)$}
      end{cases}$



      Then which one of the following is TRUE for $f$ at the point $(0,0)$?



      (A) For $a=1$, $f$ is continuous but not differentiable.



      (B) For $a=frac 12$, $f$ is continuous and differentiable.



      (C) For $a=frac 14$, $f$ is continuous and differentiable.



      (D) For $a=frac 34$, $f$ is neither continuous nor differentiable



      My attempt:



      (A) For $a=1$ $f(x,y) =
      begin{cases}
      frac{xy}{(x^2+y^2)}, & text{if $(x,y)neq (0,0)$ } \[2ex]
      0, & text{if $(x,y)= (0,0)$}
      end{cases}$



      is not continuous at $(0,0)$ as if we put $y=mx$ then $f(x,mx) =
      begin{cases}
      frac{m}{(1+m^2)}, & text{if $xneq 0$ } \[2ex]
      0, & text{if $x= 0$}
      end{cases}$



      not continuous at $0$. So, (A) is not true.



      (B) For $a=frac 12$ $f(x,y) =
      begin{cases}
      frac{xy}{(x^2+y^2)^{frac 12}}, & text{if $(x,y)neq (0,0)$ } \[2ex]
      0, & text{if $(x,y)= (0,0)$}
      end{cases}$



      is not differentiable at $(0,0)$ as $frac {f(h,k)-f(0,0)}{sqrt{h^2+k^2}}=
      frac{hk}{(h^2+k^2)}$
      where $(h,k) to (0,0)$ if we put $k=mh$ then



      $f(h,mh) =frac{m}{(1+m^2)} neq (0,0) $



      Hence, $f$ is not differentiable at $(0,0)$. So, (B) is not true.



      (C) For $a=frac 14$ $f(x,y) =
      begin{cases}
      frac{xy}{(x^2+y^2)^{frac 14}}, & text{if $(x,y)neq (0,0)$ } \[2ex]
      0, & text{if $(x,y)= (0,0)$}
      end{cases}$



      Then, $f(x,y) =frac{xsqrt y}{(frac{x^2}{y^2}+1)^{frac 14}}$ Can we prove continuity of $f$ from here?



      Observe, $f$ is differentiable at $(0,0)$ as $frac {f(h,k)-f(0,0)}{sqrt{h^2+k^2}}=
      frac{hk}{(h^2+k^2)^frac 34}=frac{h}{(frac{h^2}{k^{4/3}}+k^{2/3})^{frac 34}} to (0,0)$
      where $(h,k) to (0,0)$. So we can directly say that $f$ is differentiable and hence is continuous.



      (D) For $a=frac 34$ $f(x,y) =
      begin{cases}
      frac{xy}{(x^2+y^2)^{frac 34}}, & text{if $(x,y)neq (0,0)$ } \[2ex]
      0, & text{if $(x,y)= (0,0)$}
      end{cases}$



      From the observation of (C) we get $f$ is continuous at $(0,0)$ so (D) is also false.




      So, my basic question is although we know that (C) will be the correct option can we prove $f$ is continuous directly there? See the highlighted portion of part (C) under My attempt section.








      real-analysis calculus analysis multivariable-calculus alternative-proof






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 7 at 5:52









      GimgimGimgim

      1869




      1869






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          Recall that
          $$|xy|leq frac{(x^2+y^2)}{2}$$
          and so
          $$frac{|xy|}{(x^2+y^2)^{1/4}}leq frac{(x^2+y^2)^{3/4}}{2}to 0$$
          as $(x,y)to (0,0).$
          Hence you have continuity at $(0,0).$






          share|cite|improve this answer









          $endgroup$





















            1












            $begingroup$

            For $a=frac 1 4$ the derivative exist and is $0$: by definition of derivative this means $ frac {xy} {(x^{2}+y^{2})^{3/4}} to 0$ which follows easily from the fact that $2|xy | leq x^{2}+y^{2}$.






            share|cite|improve this answer











            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064698%2ffor-a-frac-14-f-is-continuous-and-differentiable%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              1












              $begingroup$

              Recall that
              $$|xy|leq frac{(x^2+y^2)}{2}$$
              and so
              $$frac{|xy|}{(x^2+y^2)^{1/4}}leq frac{(x^2+y^2)^{3/4}}{2}to 0$$
              as $(x,y)to (0,0).$
              Hence you have continuity at $(0,0).$






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                Recall that
                $$|xy|leq frac{(x^2+y^2)}{2}$$
                and so
                $$frac{|xy|}{(x^2+y^2)^{1/4}}leq frac{(x^2+y^2)^{3/4}}{2}to 0$$
                as $(x,y)to (0,0).$
                Hence you have continuity at $(0,0).$






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Recall that
                  $$|xy|leq frac{(x^2+y^2)}{2}$$
                  and so
                  $$frac{|xy|}{(x^2+y^2)^{1/4}}leq frac{(x^2+y^2)^{3/4}}{2}to 0$$
                  as $(x,y)to (0,0).$
                  Hence you have continuity at $(0,0).$






                  share|cite|improve this answer









                  $endgroup$



                  Recall that
                  $$|xy|leq frac{(x^2+y^2)}{2}$$
                  and so
                  $$frac{|xy|}{(x^2+y^2)^{1/4}}leq frac{(x^2+y^2)^{3/4}}{2}to 0$$
                  as $(x,y)to (0,0).$
                  Hence you have continuity at $(0,0).$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 7 at 5:59









                  Hello_WorldHello_World

                  4,11621731




                  4,11621731























                      1












                      $begingroup$

                      For $a=frac 1 4$ the derivative exist and is $0$: by definition of derivative this means $ frac {xy} {(x^{2}+y^{2})^{3/4}} to 0$ which follows easily from the fact that $2|xy | leq x^{2}+y^{2}$.






                      share|cite|improve this answer











                      $endgroup$


















                        1












                        $begingroup$

                        For $a=frac 1 4$ the derivative exist and is $0$: by definition of derivative this means $ frac {xy} {(x^{2}+y^{2})^{3/4}} to 0$ which follows easily from the fact that $2|xy | leq x^{2}+y^{2}$.






                        share|cite|improve this answer











                        $endgroup$
















                          1












                          1








                          1





                          $begingroup$

                          For $a=frac 1 4$ the derivative exist and is $0$: by definition of derivative this means $ frac {xy} {(x^{2}+y^{2})^{3/4}} to 0$ which follows easily from the fact that $2|xy | leq x^{2}+y^{2}$.






                          share|cite|improve this answer











                          $endgroup$



                          For $a=frac 1 4$ the derivative exist and is $0$: by definition of derivative this means $ frac {xy} {(x^{2}+y^{2})^{3/4}} to 0$ which follows easily from the fact that $2|xy | leq x^{2}+y^{2}$.







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited Jan 7 at 7:13

























                          answered Jan 7 at 6:04









                          Kavi Rama MurthyKavi Rama Murthy

                          54.4k32055




                          54.4k32055






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064698%2ffor-a-frac-14-f-is-continuous-and-differentiable%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              1300-talet

                              1300-talet

                              Display a custom attribute below product name in the front-end Magento 1.9.3.8