For $a=frac 14$, $f$ is continuous and differentiable.
$begingroup$
Let $f(x,y) =
begin{cases}
frac{xy}{(x^2+y^2)^a}, & text{if $(x,y)neq (0,0)$ } \[2ex]
0, & text{if $(x,y)= (0,0)$}
end{cases}$
Then which one of the following is TRUE for $f$ at the point $(0,0)$?
(A) For $a=1$, $f$ is continuous but not differentiable.
(B) For $a=frac 12$, $f$ is continuous and differentiable.
(C) For $a=frac 14$, $f$ is continuous and differentiable.
(D) For $a=frac 34$, $f$ is neither continuous nor differentiable
My attempt:
(A) For $a=1$ $f(x,y) =
begin{cases}
frac{xy}{(x^2+y^2)}, & text{if $(x,y)neq (0,0)$ } \[2ex]
0, & text{if $(x,y)= (0,0)$}
end{cases}$
is not continuous at $(0,0)$ as if we put $y=mx$ then $f(x,mx) =
begin{cases}
frac{m}{(1+m^2)}, & text{if $xneq 0$ } \[2ex]
0, & text{if $x= 0$}
end{cases}$
not continuous at $0$. So, (A) is not true.
(B) For $a=frac 12$ $f(x,y) =
begin{cases}
frac{xy}{(x^2+y^2)^{frac 12}}, & text{if $(x,y)neq (0,0)$ } \[2ex]
0, & text{if $(x,y)= (0,0)$}
end{cases}$
is not differentiable at $(0,0)$ as $frac {f(h,k)-f(0,0)}{sqrt{h^2+k^2}}=
frac{hk}{(h^2+k^2)}$ where $(h,k) to (0,0)$ if we put $k=mh$ then
$f(h,mh) =frac{m}{(1+m^2)} neq (0,0) $
Hence, $f$ is not differentiable at $(0,0)$. So, (B) is not true.
(C) For $a=frac 14$ $f(x,y) =
begin{cases}
frac{xy}{(x^2+y^2)^{frac 14}}, & text{if $(x,y)neq (0,0)$ } \[2ex]
0, & text{if $(x,y)= (0,0)$}
end{cases}$
Then, $f(x,y) =frac{xsqrt y}{(frac{x^2}{y^2}+1)^{frac 14}}$ Can we prove continuity of $f$ from here?
Observe, $f$ is differentiable at $(0,0)$ as $frac {f(h,k)-f(0,0)}{sqrt{h^2+k^2}}=
frac{hk}{(h^2+k^2)^frac 34}=frac{h}{(frac{h^2}{k^{4/3}}+k^{2/3})^{frac 34}} to (0,0)$ where $(h,k) to (0,0)$. So we can directly say that $f$ is differentiable and hence is continuous.
(D) For $a=frac 34$ $f(x,y) =
begin{cases}
frac{xy}{(x^2+y^2)^{frac 34}}, & text{if $(x,y)neq (0,0)$ } \[2ex]
0, & text{if $(x,y)= (0,0)$}
end{cases}$
From the observation of (C) we get $f$ is continuous at $(0,0)$ so (D) is also false.
So, my basic question is although we know that (C) will be the correct option can we prove $f$ is continuous directly there? See the highlighted portion of part (C) under My attempt section.
real-analysis calculus analysis multivariable-calculus alternative-proof
$endgroup$
add a comment |
$begingroup$
Let $f(x,y) =
begin{cases}
frac{xy}{(x^2+y^2)^a}, & text{if $(x,y)neq (0,0)$ } \[2ex]
0, & text{if $(x,y)= (0,0)$}
end{cases}$
Then which one of the following is TRUE for $f$ at the point $(0,0)$?
(A) For $a=1$, $f$ is continuous but not differentiable.
(B) For $a=frac 12$, $f$ is continuous and differentiable.
(C) For $a=frac 14$, $f$ is continuous and differentiable.
(D) For $a=frac 34$, $f$ is neither continuous nor differentiable
My attempt:
(A) For $a=1$ $f(x,y) =
begin{cases}
frac{xy}{(x^2+y^2)}, & text{if $(x,y)neq (0,0)$ } \[2ex]
0, & text{if $(x,y)= (0,0)$}
end{cases}$
is not continuous at $(0,0)$ as if we put $y=mx$ then $f(x,mx) =
begin{cases}
frac{m}{(1+m^2)}, & text{if $xneq 0$ } \[2ex]
0, & text{if $x= 0$}
end{cases}$
not continuous at $0$. So, (A) is not true.
(B) For $a=frac 12$ $f(x,y) =
begin{cases}
frac{xy}{(x^2+y^2)^{frac 12}}, & text{if $(x,y)neq (0,0)$ } \[2ex]
0, & text{if $(x,y)= (0,0)$}
end{cases}$
is not differentiable at $(0,0)$ as $frac {f(h,k)-f(0,0)}{sqrt{h^2+k^2}}=
frac{hk}{(h^2+k^2)}$ where $(h,k) to (0,0)$ if we put $k=mh$ then
$f(h,mh) =frac{m}{(1+m^2)} neq (0,0) $
Hence, $f$ is not differentiable at $(0,0)$. So, (B) is not true.
(C) For $a=frac 14$ $f(x,y) =
begin{cases}
frac{xy}{(x^2+y^2)^{frac 14}}, & text{if $(x,y)neq (0,0)$ } \[2ex]
0, & text{if $(x,y)= (0,0)$}
end{cases}$
Then, $f(x,y) =frac{xsqrt y}{(frac{x^2}{y^2}+1)^{frac 14}}$ Can we prove continuity of $f$ from here?
Observe, $f$ is differentiable at $(0,0)$ as $frac {f(h,k)-f(0,0)}{sqrt{h^2+k^2}}=
frac{hk}{(h^2+k^2)^frac 34}=frac{h}{(frac{h^2}{k^{4/3}}+k^{2/3})^{frac 34}} to (0,0)$ where $(h,k) to (0,0)$. So we can directly say that $f$ is differentiable and hence is continuous.
(D) For $a=frac 34$ $f(x,y) =
begin{cases}
frac{xy}{(x^2+y^2)^{frac 34}}, & text{if $(x,y)neq (0,0)$ } \[2ex]
0, & text{if $(x,y)= (0,0)$}
end{cases}$
From the observation of (C) we get $f$ is continuous at $(0,0)$ so (D) is also false.
So, my basic question is although we know that (C) will be the correct option can we prove $f$ is continuous directly there? See the highlighted portion of part (C) under My attempt section.
real-analysis calculus analysis multivariable-calculus alternative-proof
$endgroup$
add a comment |
$begingroup$
Let $f(x,y) =
begin{cases}
frac{xy}{(x^2+y^2)^a}, & text{if $(x,y)neq (0,0)$ } \[2ex]
0, & text{if $(x,y)= (0,0)$}
end{cases}$
Then which one of the following is TRUE for $f$ at the point $(0,0)$?
(A) For $a=1$, $f$ is continuous but not differentiable.
(B) For $a=frac 12$, $f$ is continuous and differentiable.
(C) For $a=frac 14$, $f$ is continuous and differentiable.
(D) For $a=frac 34$, $f$ is neither continuous nor differentiable
My attempt:
(A) For $a=1$ $f(x,y) =
begin{cases}
frac{xy}{(x^2+y^2)}, & text{if $(x,y)neq (0,0)$ } \[2ex]
0, & text{if $(x,y)= (0,0)$}
end{cases}$
is not continuous at $(0,0)$ as if we put $y=mx$ then $f(x,mx) =
begin{cases}
frac{m}{(1+m^2)}, & text{if $xneq 0$ } \[2ex]
0, & text{if $x= 0$}
end{cases}$
not continuous at $0$. So, (A) is not true.
(B) For $a=frac 12$ $f(x,y) =
begin{cases}
frac{xy}{(x^2+y^2)^{frac 12}}, & text{if $(x,y)neq (0,0)$ } \[2ex]
0, & text{if $(x,y)= (0,0)$}
end{cases}$
is not differentiable at $(0,0)$ as $frac {f(h,k)-f(0,0)}{sqrt{h^2+k^2}}=
frac{hk}{(h^2+k^2)}$ where $(h,k) to (0,0)$ if we put $k=mh$ then
$f(h,mh) =frac{m}{(1+m^2)} neq (0,0) $
Hence, $f$ is not differentiable at $(0,0)$. So, (B) is not true.
(C) For $a=frac 14$ $f(x,y) =
begin{cases}
frac{xy}{(x^2+y^2)^{frac 14}}, & text{if $(x,y)neq (0,0)$ } \[2ex]
0, & text{if $(x,y)= (0,0)$}
end{cases}$
Then, $f(x,y) =frac{xsqrt y}{(frac{x^2}{y^2}+1)^{frac 14}}$ Can we prove continuity of $f$ from here?
Observe, $f$ is differentiable at $(0,0)$ as $frac {f(h,k)-f(0,0)}{sqrt{h^2+k^2}}=
frac{hk}{(h^2+k^2)^frac 34}=frac{h}{(frac{h^2}{k^{4/3}}+k^{2/3})^{frac 34}} to (0,0)$ where $(h,k) to (0,0)$. So we can directly say that $f$ is differentiable and hence is continuous.
(D) For $a=frac 34$ $f(x,y) =
begin{cases}
frac{xy}{(x^2+y^2)^{frac 34}}, & text{if $(x,y)neq (0,0)$ } \[2ex]
0, & text{if $(x,y)= (0,0)$}
end{cases}$
From the observation of (C) we get $f$ is continuous at $(0,0)$ so (D) is also false.
So, my basic question is although we know that (C) will be the correct option can we prove $f$ is continuous directly there? See the highlighted portion of part (C) under My attempt section.
real-analysis calculus analysis multivariable-calculus alternative-proof
$endgroup$
Let $f(x,y) =
begin{cases}
frac{xy}{(x^2+y^2)^a}, & text{if $(x,y)neq (0,0)$ } \[2ex]
0, & text{if $(x,y)= (0,0)$}
end{cases}$
Then which one of the following is TRUE for $f$ at the point $(0,0)$?
(A) For $a=1$, $f$ is continuous but not differentiable.
(B) For $a=frac 12$, $f$ is continuous and differentiable.
(C) For $a=frac 14$, $f$ is continuous and differentiable.
(D) For $a=frac 34$, $f$ is neither continuous nor differentiable
My attempt:
(A) For $a=1$ $f(x,y) =
begin{cases}
frac{xy}{(x^2+y^2)}, & text{if $(x,y)neq (0,0)$ } \[2ex]
0, & text{if $(x,y)= (0,0)$}
end{cases}$
is not continuous at $(0,0)$ as if we put $y=mx$ then $f(x,mx) =
begin{cases}
frac{m}{(1+m^2)}, & text{if $xneq 0$ } \[2ex]
0, & text{if $x= 0$}
end{cases}$
not continuous at $0$. So, (A) is not true.
(B) For $a=frac 12$ $f(x,y) =
begin{cases}
frac{xy}{(x^2+y^2)^{frac 12}}, & text{if $(x,y)neq (0,0)$ } \[2ex]
0, & text{if $(x,y)= (0,0)$}
end{cases}$
is not differentiable at $(0,0)$ as $frac {f(h,k)-f(0,0)}{sqrt{h^2+k^2}}=
frac{hk}{(h^2+k^2)}$ where $(h,k) to (0,0)$ if we put $k=mh$ then
$f(h,mh) =frac{m}{(1+m^2)} neq (0,0) $
Hence, $f$ is not differentiable at $(0,0)$. So, (B) is not true.
(C) For $a=frac 14$ $f(x,y) =
begin{cases}
frac{xy}{(x^2+y^2)^{frac 14}}, & text{if $(x,y)neq (0,0)$ } \[2ex]
0, & text{if $(x,y)= (0,0)$}
end{cases}$
Then, $f(x,y) =frac{xsqrt y}{(frac{x^2}{y^2}+1)^{frac 14}}$ Can we prove continuity of $f$ from here?
Observe, $f$ is differentiable at $(0,0)$ as $frac {f(h,k)-f(0,0)}{sqrt{h^2+k^2}}=
frac{hk}{(h^2+k^2)^frac 34}=frac{h}{(frac{h^2}{k^{4/3}}+k^{2/3})^{frac 34}} to (0,0)$ where $(h,k) to (0,0)$. So we can directly say that $f$ is differentiable and hence is continuous.
(D) For $a=frac 34$ $f(x,y) =
begin{cases}
frac{xy}{(x^2+y^2)^{frac 34}}, & text{if $(x,y)neq (0,0)$ } \[2ex]
0, & text{if $(x,y)= (0,0)$}
end{cases}$
From the observation of (C) we get $f$ is continuous at $(0,0)$ so (D) is also false.
So, my basic question is although we know that (C) will be the correct option can we prove $f$ is continuous directly there? See the highlighted portion of part (C) under My attempt section.
real-analysis calculus analysis multivariable-calculus alternative-proof
real-analysis calculus analysis multivariable-calculus alternative-proof
asked Jan 7 at 5:52
GimgimGimgim
1869
1869
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Recall that
$$|xy|leq frac{(x^2+y^2)}{2}$$
and so
$$frac{|xy|}{(x^2+y^2)^{1/4}}leq frac{(x^2+y^2)^{3/4}}{2}to 0$$
as $(x,y)to (0,0).$
Hence you have continuity at $(0,0).$
$endgroup$
add a comment |
$begingroup$
For $a=frac 1 4$ the derivative exist and is $0$: by definition of derivative this means $ frac {xy} {(x^{2}+y^{2})^{3/4}} to 0$ which follows easily from the fact that $2|xy | leq x^{2}+y^{2}$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064698%2ffor-a-frac-14-f-is-continuous-and-differentiable%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Recall that
$$|xy|leq frac{(x^2+y^2)}{2}$$
and so
$$frac{|xy|}{(x^2+y^2)^{1/4}}leq frac{(x^2+y^2)^{3/4}}{2}to 0$$
as $(x,y)to (0,0).$
Hence you have continuity at $(0,0).$
$endgroup$
add a comment |
$begingroup$
Recall that
$$|xy|leq frac{(x^2+y^2)}{2}$$
and so
$$frac{|xy|}{(x^2+y^2)^{1/4}}leq frac{(x^2+y^2)^{3/4}}{2}to 0$$
as $(x,y)to (0,0).$
Hence you have continuity at $(0,0).$
$endgroup$
add a comment |
$begingroup$
Recall that
$$|xy|leq frac{(x^2+y^2)}{2}$$
and so
$$frac{|xy|}{(x^2+y^2)^{1/4}}leq frac{(x^2+y^2)^{3/4}}{2}to 0$$
as $(x,y)to (0,0).$
Hence you have continuity at $(0,0).$
$endgroup$
Recall that
$$|xy|leq frac{(x^2+y^2)}{2}$$
and so
$$frac{|xy|}{(x^2+y^2)^{1/4}}leq frac{(x^2+y^2)^{3/4}}{2}to 0$$
as $(x,y)to (0,0).$
Hence you have continuity at $(0,0).$
answered Jan 7 at 5:59
Hello_WorldHello_World
4,11621731
4,11621731
add a comment |
add a comment |
$begingroup$
For $a=frac 1 4$ the derivative exist and is $0$: by definition of derivative this means $ frac {xy} {(x^{2}+y^{2})^{3/4}} to 0$ which follows easily from the fact that $2|xy | leq x^{2}+y^{2}$.
$endgroup$
add a comment |
$begingroup$
For $a=frac 1 4$ the derivative exist and is $0$: by definition of derivative this means $ frac {xy} {(x^{2}+y^{2})^{3/4}} to 0$ which follows easily from the fact that $2|xy | leq x^{2}+y^{2}$.
$endgroup$
add a comment |
$begingroup$
For $a=frac 1 4$ the derivative exist and is $0$: by definition of derivative this means $ frac {xy} {(x^{2}+y^{2})^{3/4}} to 0$ which follows easily from the fact that $2|xy | leq x^{2}+y^{2}$.
$endgroup$
For $a=frac 1 4$ the derivative exist and is $0$: by definition of derivative this means $ frac {xy} {(x^{2}+y^{2})^{3/4}} to 0$ which follows easily from the fact that $2|xy | leq x^{2}+y^{2}$.
edited Jan 7 at 7:13
answered Jan 7 at 6:04
Kavi Rama MurthyKavi Rama Murthy
54.4k32055
54.4k32055
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064698%2ffor-a-frac-14-f-is-continuous-and-differentiable%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown