Infinite series sum which have infinite terms [duplicate]












-3












$begingroup$



This question already has an answer here:




  • The sum of the series $frac{15}{16}+frac{15}{16} times frac{21}{24}+frac{15}{16} times frac{21}{24} times frac{27}{32}+dots$ [duplicate]

    1 answer




Sum of series $displaystyle frac{15}{16}+frac{15}{16}cdotfrac{21}{24}+frac{15}{16}cdotfrac{21}{24}cdot frac{27}{32}+cdotscdots $



what i try



$displaystyle S =frac{15}{16}+frac{15cdot 21}{16cdot 24}+frac{15cdot 21cdot 27}{16cdot 24cdot 32}+cdots cdots $



i am trying to convert numerator and denomiantor terms into arithmetic progression



$displaystyle frac{9S}{8}=frac{9cdot 15}{8cdot 16}+frac{9cdot 15cdot 21}{8cdot 16cdot 24}+cdots cdots $



$displaystyle frac{9S}{8}+frac{9}{8}+1=1+frac{9}{8}+frac{9cdot 15}{8cdot 16}+frac{9cdot 15cdot 21}{8cdot 16cdot 24}+cdots cdots $



but it is divergent series



i did not know how i solve that infinite series



Help me how to solve










share|cite|improve this question











$endgroup$



marked as duplicate by user, Abcd, Lord Shark the Unknown, Shailesh, Cesareo Jan 13 at 9:41


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.















  • $begingroup$
    You are factoring only one $3/4$ from the series.
    $endgroup$
    – EuxhenH
    Jan 7 at 7:38






  • 1




    $begingroup$
    math.stackexchange.com/questions/746388/…
    $endgroup$
    – lab bhattacharjee
    Jan 7 at 7:40










  • $begingroup$
    Your title is overly redundant: a series is already a sum of infinite terms.
    $endgroup$
    – Jack D'Aurizio
    Jan 7 at 12:54
















-3












$begingroup$



This question already has an answer here:




  • The sum of the series $frac{15}{16}+frac{15}{16} times frac{21}{24}+frac{15}{16} times frac{21}{24} times frac{27}{32}+dots$ [duplicate]

    1 answer




Sum of series $displaystyle frac{15}{16}+frac{15}{16}cdotfrac{21}{24}+frac{15}{16}cdotfrac{21}{24}cdot frac{27}{32}+cdotscdots $



what i try



$displaystyle S =frac{15}{16}+frac{15cdot 21}{16cdot 24}+frac{15cdot 21cdot 27}{16cdot 24cdot 32}+cdots cdots $



i am trying to convert numerator and denomiantor terms into arithmetic progression



$displaystyle frac{9S}{8}=frac{9cdot 15}{8cdot 16}+frac{9cdot 15cdot 21}{8cdot 16cdot 24}+cdots cdots $



$displaystyle frac{9S}{8}+frac{9}{8}+1=1+frac{9}{8}+frac{9cdot 15}{8cdot 16}+frac{9cdot 15cdot 21}{8cdot 16cdot 24}+cdots cdots $



but it is divergent series



i did not know how i solve that infinite series



Help me how to solve










share|cite|improve this question











$endgroup$



marked as duplicate by user, Abcd, Lord Shark the Unknown, Shailesh, Cesareo Jan 13 at 9:41


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.















  • $begingroup$
    You are factoring only one $3/4$ from the series.
    $endgroup$
    – EuxhenH
    Jan 7 at 7:38






  • 1




    $begingroup$
    math.stackexchange.com/questions/746388/…
    $endgroup$
    – lab bhattacharjee
    Jan 7 at 7:40










  • $begingroup$
    Your title is overly redundant: a series is already a sum of infinite terms.
    $endgroup$
    – Jack D'Aurizio
    Jan 7 at 12:54














-3












-3








-3





$begingroup$



This question already has an answer here:




  • The sum of the series $frac{15}{16}+frac{15}{16} times frac{21}{24}+frac{15}{16} times frac{21}{24} times frac{27}{32}+dots$ [duplicate]

    1 answer




Sum of series $displaystyle frac{15}{16}+frac{15}{16}cdotfrac{21}{24}+frac{15}{16}cdotfrac{21}{24}cdot frac{27}{32}+cdotscdots $



what i try



$displaystyle S =frac{15}{16}+frac{15cdot 21}{16cdot 24}+frac{15cdot 21cdot 27}{16cdot 24cdot 32}+cdots cdots $



i am trying to convert numerator and denomiantor terms into arithmetic progression



$displaystyle frac{9S}{8}=frac{9cdot 15}{8cdot 16}+frac{9cdot 15cdot 21}{8cdot 16cdot 24}+cdots cdots $



$displaystyle frac{9S}{8}+frac{9}{8}+1=1+frac{9}{8}+frac{9cdot 15}{8cdot 16}+frac{9cdot 15cdot 21}{8cdot 16cdot 24}+cdots cdots $



but it is divergent series



i did not know how i solve that infinite series



Help me how to solve










share|cite|improve this question











$endgroup$





This question already has an answer here:




  • The sum of the series $frac{15}{16}+frac{15}{16} times frac{21}{24}+frac{15}{16} times frac{21}{24} times frac{27}{32}+dots$ [duplicate]

    1 answer




Sum of series $displaystyle frac{15}{16}+frac{15}{16}cdotfrac{21}{24}+frac{15}{16}cdotfrac{21}{24}cdot frac{27}{32}+cdotscdots $



what i try



$displaystyle S =frac{15}{16}+frac{15cdot 21}{16cdot 24}+frac{15cdot 21cdot 27}{16cdot 24cdot 32}+cdots cdots $



i am trying to convert numerator and denomiantor terms into arithmetic progression



$displaystyle frac{9S}{8}=frac{9cdot 15}{8cdot 16}+frac{9cdot 15cdot 21}{8cdot 16cdot 24}+cdots cdots $



$displaystyle frac{9S}{8}+frac{9}{8}+1=1+frac{9}{8}+frac{9cdot 15}{8cdot 16}+frac{9cdot 15cdot 21}{8cdot 16cdot 24}+cdots cdots $



but it is divergent series



i did not know how i solve that infinite series



Help me how to solve





This question already has an answer here:




  • The sum of the series $frac{15}{16}+frac{15}{16} times frac{21}{24}+frac{15}{16} times frac{21}{24} times frac{27}{32}+dots$ [duplicate]

    1 answer








sequences-and-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 7 at 8:42







jacky

















asked Jan 7 at 7:34









jackyjacky

537312




537312




marked as duplicate by user, Abcd, Lord Shark the Unknown, Shailesh, Cesareo Jan 13 at 9:41


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.






marked as duplicate by user, Abcd, Lord Shark the Unknown, Shailesh, Cesareo Jan 13 at 9:41


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.














  • $begingroup$
    You are factoring only one $3/4$ from the series.
    $endgroup$
    – EuxhenH
    Jan 7 at 7:38






  • 1




    $begingroup$
    math.stackexchange.com/questions/746388/…
    $endgroup$
    – lab bhattacharjee
    Jan 7 at 7:40










  • $begingroup$
    Your title is overly redundant: a series is already a sum of infinite terms.
    $endgroup$
    – Jack D'Aurizio
    Jan 7 at 12:54


















  • $begingroup$
    You are factoring only one $3/4$ from the series.
    $endgroup$
    – EuxhenH
    Jan 7 at 7:38






  • 1




    $begingroup$
    math.stackexchange.com/questions/746388/…
    $endgroup$
    – lab bhattacharjee
    Jan 7 at 7:40










  • $begingroup$
    Your title is overly redundant: a series is already a sum of infinite terms.
    $endgroup$
    – Jack D'Aurizio
    Jan 7 at 12:54
















$begingroup$
You are factoring only one $3/4$ from the series.
$endgroup$
– EuxhenH
Jan 7 at 7:38




$begingroup$
You are factoring only one $3/4$ from the series.
$endgroup$
– EuxhenH
Jan 7 at 7:38




1




1




$begingroup$
math.stackexchange.com/questions/746388/…
$endgroup$
– lab bhattacharjee
Jan 7 at 7:40




$begingroup$
math.stackexchange.com/questions/746388/…
$endgroup$
– lab bhattacharjee
Jan 7 at 7:40












$begingroup$
Your title is overly redundant: a series is already a sum of infinite terms.
$endgroup$
– Jack D'Aurizio
Jan 7 at 12:54




$begingroup$
Your title is overly redundant: a series is already a sum of infinite terms.
$endgroup$
– Jack D'Aurizio
Jan 7 at 12:54










2 Answers
2






active

oldest

votes


















2












$begingroup$

Based on the hint of lab bhattacharjee



$$S=frac{5}{2}left(frac{3}{8}right)+frac{5cdot7}{2cdot3}left(frac{3}{8}right)^2+frac{5cdot7cdot9}{2cdot3cdot4}left(frac{3}{8}right)^3+ cdots\
=frac{4}{3}cdotfrac{2}{3}sum_{n=2}^infty
frac{-frac{3}{2}left(-frac{3}{2}-1right)cdotsleft(-frac{3}{2}-n+1right)}{n!}left(-frac{3}{4}right)^n\
=frac{8}{9}left[left(1-frac{3}{4}right)^{-frac{3}{2}}-1-frac{-frac{3}{2}}{1!}left(-frac{3}{4}right)right]\=frac{8}{9}left[8-1-frac{9}{8}right]=frac{47}{9}.
$$





Generally for arbitrary $ainmathbb{R}_+$, $kinmathbb{Z}_+$, $|x|<1$:
$$
sum_{N=1}^infty prod_{n=1}^Nleft(1+frac{a-1}{k+n}right)x=
frac{k!}{a(a+1)cdots(a+k-1)x^k}sum_{N=k+1}^inftyfrac{a(a+1)cdots(a+N-1)}{N!}x^N\
=left[binom{a+k-1}{k}x^kright]^{-1}left[left(1-xright)^{-a}-sum_{N=0}^kbinom{a+N-1}{N}x^Nright].
$$



For your problem: $a=frac{3}{2}$, $k=1$, $x=frac{3}{4}$.



Note:
$$
binom{a}{k}:=frac{1}{k!}prod_{i=0}^{k-1} (a-i);quad
binom{a+k-1}{k}x^kequiv binom{-a}{k}(-x)^k.
$$






share|cite|improve this answer











$endgroup$





















    0












    $begingroup$

    We have $S=frac{3}{4}sum_{n=2}^{infty}a_n$ with



    $a_n=frac{5 cdot 7 cdot ... cdot (2n+1)}{4 cdot 6 cdot ... cdot (2n)}$. It is easy to see that $a_n ge 1$, hence $sum_{n=2}^{infty}a_n$ is divergent, thus $S= infty$.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      answer is $47/9$
      $endgroup$
      – jacky
      Jan 7 at 8:47










    • $begingroup$
      Think of the harmonic series $$1+ frac 12 + frac 13 + frac 14 + cdots$$ The terms are strictly decreasing and tend to $0$, yet the series still diverges. Here, you have a series where not only do the terms dont tend to $0$, but are in fact strictly increasing (when put into the form as suggested in this answer)! There is thus no way that this series is ever going to converge.
      $endgroup$
      – glowstonetrees
      Jan 7 at 9:19




















    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    Based on the hint of lab bhattacharjee



    $$S=frac{5}{2}left(frac{3}{8}right)+frac{5cdot7}{2cdot3}left(frac{3}{8}right)^2+frac{5cdot7cdot9}{2cdot3cdot4}left(frac{3}{8}right)^3+ cdots\
    =frac{4}{3}cdotfrac{2}{3}sum_{n=2}^infty
    frac{-frac{3}{2}left(-frac{3}{2}-1right)cdotsleft(-frac{3}{2}-n+1right)}{n!}left(-frac{3}{4}right)^n\
    =frac{8}{9}left[left(1-frac{3}{4}right)^{-frac{3}{2}}-1-frac{-frac{3}{2}}{1!}left(-frac{3}{4}right)right]\=frac{8}{9}left[8-1-frac{9}{8}right]=frac{47}{9}.
    $$





    Generally for arbitrary $ainmathbb{R}_+$, $kinmathbb{Z}_+$, $|x|<1$:
    $$
    sum_{N=1}^infty prod_{n=1}^Nleft(1+frac{a-1}{k+n}right)x=
    frac{k!}{a(a+1)cdots(a+k-1)x^k}sum_{N=k+1}^inftyfrac{a(a+1)cdots(a+N-1)}{N!}x^N\
    =left[binom{a+k-1}{k}x^kright]^{-1}left[left(1-xright)^{-a}-sum_{N=0}^kbinom{a+N-1}{N}x^Nright].
    $$



    For your problem: $a=frac{3}{2}$, $k=1$, $x=frac{3}{4}$.



    Note:
    $$
    binom{a}{k}:=frac{1}{k!}prod_{i=0}^{k-1} (a-i);quad
    binom{a+k-1}{k}x^kequiv binom{-a}{k}(-x)^k.
    $$






    share|cite|improve this answer











    $endgroup$


















      2












      $begingroup$

      Based on the hint of lab bhattacharjee



      $$S=frac{5}{2}left(frac{3}{8}right)+frac{5cdot7}{2cdot3}left(frac{3}{8}right)^2+frac{5cdot7cdot9}{2cdot3cdot4}left(frac{3}{8}right)^3+ cdots\
      =frac{4}{3}cdotfrac{2}{3}sum_{n=2}^infty
      frac{-frac{3}{2}left(-frac{3}{2}-1right)cdotsleft(-frac{3}{2}-n+1right)}{n!}left(-frac{3}{4}right)^n\
      =frac{8}{9}left[left(1-frac{3}{4}right)^{-frac{3}{2}}-1-frac{-frac{3}{2}}{1!}left(-frac{3}{4}right)right]\=frac{8}{9}left[8-1-frac{9}{8}right]=frac{47}{9}.
      $$





      Generally for arbitrary $ainmathbb{R}_+$, $kinmathbb{Z}_+$, $|x|<1$:
      $$
      sum_{N=1}^infty prod_{n=1}^Nleft(1+frac{a-1}{k+n}right)x=
      frac{k!}{a(a+1)cdots(a+k-1)x^k}sum_{N=k+1}^inftyfrac{a(a+1)cdots(a+N-1)}{N!}x^N\
      =left[binom{a+k-1}{k}x^kright]^{-1}left[left(1-xright)^{-a}-sum_{N=0}^kbinom{a+N-1}{N}x^Nright].
      $$



      For your problem: $a=frac{3}{2}$, $k=1$, $x=frac{3}{4}$.



      Note:
      $$
      binom{a}{k}:=frac{1}{k!}prod_{i=0}^{k-1} (a-i);quad
      binom{a+k-1}{k}x^kequiv binom{-a}{k}(-x)^k.
      $$






      share|cite|improve this answer











      $endgroup$
















        2












        2








        2





        $begingroup$

        Based on the hint of lab bhattacharjee



        $$S=frac{5}{2}left(frac{3}{8}right)+frac{5cdot7}{2cdot3}left(frac{3}{8}right)^2+frac{5cdot7cdot9}{2cdot3cdot4}left(frac{3}{8}right)^3+ cdots\
        =frac{4}{3}cdotfrac{2}{3}sum_{n=2}^infty
        frac{-frac{3}{2}left(-frac{3}{2}-1right)cdotsleft(-frac{3}{2}-n+1right)}{n!}left(-frac{3}{4}right)^n\
        =frac{8}{9}left[left(1-frac{3}{4}right)^{-frac{3}{2}}-1-frac{-frac{3}{2}}{1!}left(-frac{3}{4}right)right]\=frac{8}{9}left[8-1-frac{9}{8}right]=frac{47}{9}.
        $$





        Generally for arbitrary $ainmathbb{R}_+$, $kinmathbb{Z}_+$, $|x|<1$:
        $$
        sum_{N=1}^infty prod_{n=1}^Nleft(1+frac{a-1}{k+n}right)x=
        frac{k!}{a(a+1)cdots(a+k-1)x^k}sum_{N=k+1}^inftyfrac{a(a+1)cdots(a+N-1)}{N!}x^N\
        =left[binom{a+k-1}{k}x^kright]^{-1}left[left(1-xright)^{-a}-sum_{N=0}^kbinom{a+N-1}{N}x^Nright].
        $$



        For your problem: $a=frac{3}{2}$, $k=1$, $x=frac{3}{4}$.



        Note:
        $$
        binom{a}{k}:=frac{1}{k!}prod_{i=0}^{k-1} (a-i);quad
        binom{a+k-1}{k}x^kequiv binom{-a}{k}(-x)^k.
        $$






        share|cite|improve this answer











        $endgroup$



        Based on the hint of lab bhattacharjee



        $$S=frac{5}{2}left(frac{3}{8}right)+frac{5cdot7}{2cdot3}left(frac{3}{8}right)^2+frac{5cdot7cdot9}{2cdot3cdot4}left(frac{3}{8}right)^3+ cdots\
        =frac{4}{3}cdotfrac{2}{3}sum_{n=2}^infty
        frac{-frac{3}{2}left(-frac{3}{2}-1right)cdotsleft(-frac{3}{2}-n+1right)}{n!}left(-frac{3}{4}right)^n\
        =frac{8}{9}left[left(1-frac{3}{4}right)^{-frac{3}{2}}-1-frac{-frac{3}{2}}{1!}left(-frac{3}{4}right)right]\=frac{8}{9}left[8-1-frac{9}{8}right]=frac{47}{9}.
        $$





        Generally for arbitrary $ainmathbb{R}_+$, $kinmathbb{Z}_+$, $|x|<1$:
        $$
        sum_{N=1}^infty prod_{n=1}^Nleft(1+frac{a-1}{k+n}right)x=
        frac{k!}{a(a+1)cdots(a+k-1)x^k}sum_{N=k+1}^inftyfrac{a(a+1)cdots(a+N-1)}{N!}x^N\
        =left[binom{a+k-1}{k}x^kright]^{-1}left[left(1-xright)^{-a}-sum_{N=0}^kbinom{a+N-1}{N}x^Nright].
        $$



        For your problem: $a=frac{3}{2}$, $k=1$, $x=frac{3}{4}$.



        Note:
        $$
        binom{a}{k}:=frac{1}{k!}prod_{i=0}^{k-1} (a-i);quad
        binom{a+k-1}{k}x^kequiv binom{-a}{k}(-x)^k.
        $$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 8 at 11:04

























        answered Jan 7 at 12:26









        useruser

        3,8551627




        3,8551627























            0












            $begingroup$

            We have $S=frac{3}{4}sum_{n=2}^{infty}a_n$ with



            $a_n=frac{5 cdot 7 cdot ... cdot (2n+1)}{4 cdot 6 cdot ... cdot (2n)}$. It is easy to see that $a_n ge 1$, hence $sum_{n=2}^{infty}a_n$ is divergent, thus $S= infty$.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              answer is $47/9$
              $endgroup$
              – jacky
              Jan 7 at 8:47










            • $begingroup$
              Think of the harmonic series $$1+ frac 12 + frac 13 + frac 14 + cdots$$ The terms are strictly decreasing and tend to $0$, yet the series still diverges. Here, you have a series where not only do the terms dont tend to $0$, but are in fact strictly increasing (when put into the form as suggested in this answer)! There is thus no way that this series is ever going to converge.
              $endgroup$
              – glowstonetrees
              Jan 7 at 9:19


















            0












            $begingroup$

            We have $S=frac{3}{4}sum_{n=2}^{infty}a_n$ with



            $a_n=frac{5 cdot 7 cdot ... cdot (2n+1)}{4 cdot 6 cdot ... cdot (2n)}$. It is easy to see that $a_n ge 1$, hence $sum_{n=2}^{infty}a_n$ is divergent, thus $S= infty$.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              answer is $47/9$
              $endgroup$
              – jacky
              Jan 7 at 8:47










            • $begingroup$
              Think of the harmonic series $$1+ frac 12 + frac 13 + frac 14 + cdots$$ The terms are strictly decreasing and tend to $0$, yet the series still diverges. Here, you have a series where not only do the terms dont tend to $0$, but are in fact strictly increasing (when put into the form as suggested in this answer)! There is thus no way that this series is ever going to converge.
              $endgroup$
              – glowstonetrees
              Jan 7 at 9:19
















            0












            0








            0





            $begingroup$

            We have $S=frac{3}{4}sum_{n=2}^{infty}a_n$ with



            $a_n=frac{5 cdot 7 cdot ... cdot (2n+1)}{4 cdot 6 cdot ... cdot (2n)}$. It is easy to see that $a_n ge 1$, hence $sum_{n=2}^{infty}a_n$ is divergent, thus $S= infty$.






            share|cite|improve this answer









            $endgroup$



            We have $S=frac{3}{4}sum_{n=2}^{infty}a_n$ with



            $a_n=frac{5 cdot 7 cdot ... cdot (2n+1)}{4 cdot 6 cdot ... cdot (2n)}$. It is easy to see that $a_n ge 1$, hence $sum_{n=2}^{infty}a_n$ is divergent, thus $S= infty$.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 7 at 7:43









            FredFred

            44.7k1846




            44.7k1846












            • $begingroup$
              answer is $47/9$
              $endgroup$
              – jacky
              Jan 7 at 8:47










            • $begingroup$
              Think of the harmonic series $$1+ frac 12 + frac 13 + frac 14 + cdots$$ The terms are strictly decreasing and tend to $0$, yet the series still diverges. Here, you have a series where not only do the terms dont tend to $0$, but are in fact strictly increasing (when put into the form as suggested in this answer)! There is thus no way that this series is ever going to converge.
              $endgroup$
              – glowstonetrees
              Jan 7 at 9:19




















            • $begingroup$
              answer is $47/9$
              $endgroup$
              – jacky
              Jan 7 at 8:47










            • $begingroup$
              Think of the harmonic series $$1+ frac 12 + frac 13 + frac 14 + cdots$$ The terms are strictly decreasing and tend to $0$, yet the series still diverges. Here, you have a series where not only do the terms dont tend to $0$, but are in fact strictly increasing (when put into the form as suggested in this answer)! There is thus no way that this series is ever going to converge.
              $endgroup$
              – glowstonetrees
              Jan 7 at 9:19


















            $begingroup$
            answer is $47/9$
            $endgroup$
            – jacky
            Jan 7 at 8:47




            $begingroup$
            answer is $47/9$
            $endgroup$
            – jacky
            Jan 7 at 8:47












            $begingroup$
            Think of the harmonic series $$1+ frac 12 + frac 13 + frac 14 + cdots$$ The terms are strictly decreasing and tend to $0$, yet the series still diverges. Here, you have a series where not only do the terms dont tend to $0$, but are in fact strictly increasing (when put into the form as suggested in this answer)! There is thus no way that this series is ever going to converge.
            $endgroup$
            – glowstonetrees
            Jan 7 at 9:19






            $begingroup$
            Think of the harmonic series $$1+ frac 12 + frac 13 + frac 14 + cdots$$ The terms are strictly decreasing and tend to $0$, yet the series still diverges. Here, you have a series where not only do the terms dont tend to $0$, but are in fact strictly increasing (when put into the form as suggested in this answer)! There is thus no way that this series is ever going to converge.
            $endgroup$
            – glowstonetrees
            Jan 7 at 9:19





            Popular posts from this blog

            1300-talet

            1300-talet

            Display a custom attribute below product name in the front-end Magento 1.9.3.8