Infinite series sum which have infinite terms [duplicate]
$begingroup$
This question already has an answer here:
The sum of the series $frac{15}{16}+frac{15}{16} times frac{21}{24}+frac{15}{16} times frac{21}{24} times frac{27}{32}+dots$ [duplicate]
1 answer
Sum of series $displaystyle frac{15}{16}+frac{15}{16}cdotfrac{21}{24}+frac{15}{16}cdotfrac{21}{24}cdot frac{27}{32}+cdotscdots $
what i try
$displaystyle S =frac{15}{16}+frac{15cdot 21}{16cdot 24}+frac{15cdot 21cdot 27}{16cdot 24cdot 32}+cdots cdots $
i am trying to convert numerator and denomiantor terms into arithmetic progression
$displaystyle frac{9S}{8}=frac{9cdot 15}{8cdot 16}+frac{9cdot 15cdot 21}{8cdot 16cdot 24}+cdots cdots $
$displaystyle frac{9S}{8}+frac{9}{8}+1=1+frac{9}{8}+frac{9cdot 15}{8cdot 16}+frac{9cdot 15cdot 21}{8cdot 16cdot 24}+cdots cdots $
but it is divergent series
i did not know how i solve that infinite series
Help me how to solve
sequences-and-series
$endgroup$
marked as duplicate by user, Abcd, Lord Shark the Unknown, Shailesh, Cesareo Jan 13 at 9:41
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |
$begingroup$
This question already has an answer here:
The sum of the series $frac{15}{16}+frac{15}{16} times frac{21}{24}+frac{15}{16} times frac{21}{24} times frac{27}{32}+dots$ [duplicate]
1 answer
Sum of series $displaystyle frac{15}{16}+frac{15}{16}cdotfrac{21}{24}+frac{15}{16}cdotfrac{21}{24}cdot frac{27}{32}+cdotscdots $
what i try
$displaystyle S =frac{15}{16}+frac{15cdot 21}{16cdot 24}+frac{15cdot 21cdot 27}{16cdot 24cdot 32}+cdots cdots $
i am trying to convert numerator and denomiantor terms into arithmetic progression
$displaystyle frac{9S}{8}=frac{9cdot 15}{8cdot 16}+frac{9cdot 15cdot 21}{8cdot 16cdot 24}+cdots cdots $
$displaystyle frac{9S}{8}+frac{9}{8}+1=1+frac{9}{8}+frac{9cdot 15}{8cdot 16}+frac{9cdot 15cdot 21}{8cdot 16cdot 24}+cdots cdots $
but it is divergent series
i did not know how i solve that infinite series
Help me how to solve
sequences-and-series
$endgroup$
marked as duplicate by user, Abcd, Lord Shark the Unknown, Shailesh, Cesareo Jan 13 at 9:41
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
$begingroup$
You are factoring only one $3/4$ from the series.
$endgroup$
– EuxhenH
Jan 7 at 7:38
1
$begingroup$
math.stackexchange.com/questions/746388/…
$endgroup$
– lab bhattacharjee
Jan 7 at 7:40
$begingroup$
Your title is overly redundant: a series is already a sum of infinite terms.
$endgroup$
– Jack D'Aurizio
Jan 7 at 12:54
add a comment |
$begingroup$
This question already has an answer here:
The sum of the series $frac{15}{16}+frac{15}{16} times frac{21}{24}+frac{15}{16} times frac{21}{24} times frac{27}{32}+dots$ [duplicate]
1 answer
Sum of series $displaystyle frac{15}{16}+frac{15}{16}cdotfrac{21}{24}+frac{15}{16}cdotfrac{21}{24}cdot frac{27}{32}+cdotscdots $
what i try
$displaystyle S =frac{15}{16}+frac{15cdot 21}{16cdot 24}+frac{15cdot 21cdot 27}{16cdot 24cdot 32}+cdots cdots $
i am trying to convert numerator and denomiantor terms into arithmetic progression
$displaystyle frac{9S}{8}=frac{9cdot 15}{8cdot 16}+frac{9cdot 15cdot 21}{8cdot 16cdot 24}+cdots cdots $
$displaystyle frac{9S}{8}+frac{9}{8}+1=1+frac{9}{8}+frac{9cdot 15}{8cdot 16}+frac{9cdot 15cdot 21}{8cdot 16cdot 24}+cdots cdots $
but it is divergent series
i did not know how i solve that infinite series
Help me how to solve
sequences-and-series
$endgroup$
This question already has an answer here:
The sum of the series $frac{15}{16}+frac{15}{16} times frac{21}{24}+frac{15}{16} times frac{21}{24} times frac{27}{32}+dots$ [duplicate]
1 answer
Sum of series $displaystyle frac{15}{16}+frac{15}{16}cdotfrac{21}{24}+frac{15}{16}cdotfrac{21}{24}cdot frac{27}{32}+cdotscdots $
what i try
$displaystyle S =frac{15}{16}+frac{15cdot 21}{16cdot 24}+frac{15cdot 21cdot 27}{16cdot 24cdot 32}+cdots cdots $
i am trying to convert numerator and denomiantor terms into arithmetic progression
$displaystyle frac{9S}{8}=frac{9cdot 15}{8cdot 16}+frac{9cdot 15cdot 21}{8cdot 16cdot 24}+cdots cdots $
$displaystyle frac{9S}{8}+frac{9}{8}+1=1+frac{9}{8}+frac{9cdot 15}{8cdot 16}+frac{9cdot 15cdot 21}{8cdot 16cdot 24}+cdots cdots $
but it is divergent series
i did not know how i solve that infinite series
Help me how to solve
This question already has an answer here:
The sum of the series $frac{15}{16}+frac{15}{16} times frac{21}{24}+frac{15}{16} times frac{21}{24} times frac{27}{32}+dots$ [duplicate]
1 answer
sequences-and-series
sequences-and-series
edited Jan 7 at 8:42
jacky
asked Jan 7 at 7:34
jackyjacky
537312
537312
marked as duplicate by user, Abcd, Lord Shark the Unknown, Shailesh, Cesareo Jan 13 at 9:41
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
marked as duplicate by user, Abcd, Lord Shark the Unknown, Shailesh, Cesareo Jan 13 at 9:41
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
$begingroup$
You are factoring only one $3/4$ from the series.
$endgroup$
– EuxhenH
Jan 7 at 7:38
1
$begingroup$
math.stackexchange.com/questions/746388/…
$endgroup$
– lab bhattacharjee
Jan 7 at 7:40
$begingroup$
Your title is overly redundant: a series is already a sum of infinite terms.
$endgroup$
– Jack D'Aurizio
Jan 7 at 12:54
add a comment |
$begingroup$
You are factoring only one $3/4$ from the series.
$endgroup$
– EuxhenH
Jan 7 at 7:38
1
$begingroup$
math.stackexchange.com/questions/746388/…
$endgroup$
– lab bhattacharjee
Jan 7 at 7:40
$begingroup$
Your title is overly redundant: a series is already a sum of infinite terms.
$endgroup$
– Jack D'Aurizio
Jan 7 at 12:54
$begingroup$
You are factoring only one $3/4$ from the series.
$endgroup$
– EuxhenH
Jan 7 at 7:38
$begingroup$
You are factoring only one $3/4$ from the series.
$endgroup$
– EuxhenH
Jan 7 at 7:38
1
1
$begingroup$
math.stackexchange.com/questions/746388/…
$endgroup$
– lab bhattacharjee
Jan 7 at 7:40
$begingroup$
math.stackexchange.com/questions/746388/…
$endgroup$
– lab bhattacharjee
Jan 7 at 7:40
$begingroup$
Your title is overly redundant: a series is already a sum of infinite terms.
$endgroup$
– Jack D'Aurizio
Jan 7 at 12:54
$begingroup$
Your title is overly redundant: a series is already a sum of infinite terms.
$endgroup$
– Jack D'Aurizio
Jan 7 at 12:54
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Based on the hint of lab bhattacharjee
$$S=frac{5}{2}left(frac{3}{8}right)+frac{5cdot7}{2cdot3}left(frac{3}{8}right)^2+frac{5cdot7cdot9}{2cdot3cdot4}left(frac{3}{8}right)^3+ cdots\
=frac{4}{3}cdotfrac{2}{3}sum_{n=2}^infty
frac{-frac{3}{2}left(-frac{3}{2}-1right)cdotsleft(-frac{3}{2}-n+1right)}{n!}left(-frac{3}{4}right)^n\
=frac{8}{9}left[left(1-frac{3}{4}right)^{-frac{3}{2}}-1-frac{-frac{3}{2}}{1!}left(-frac{3}{4}right)right]\=frac{8}{9}left[8-1-frac{9}{8}right]=frac{47}{9}.
$$
Generally for arbitrary $ainmathbb{R}_+$, $kinmathbb{Z}_+$, $|x|<1$:
$$
sum_{N=1}^infty prod_{n=1}^Nleft(1+frac{a-1}{k+n}right)x=
frac{k!}{a(a+1)cdots(a+k-1)x^k}sum_{N=k+1}^inftyfrac{a(a+1)cdots(a+N-1)}{N!}x^N\
=left[binom{a+k-1}{k}x^kright]^{-1}left[left(1-xright)^{-a}-sum_{N=0}^kbinom{a+N-1}{N}x^Nright].
$$
For your problem: $a=frac{3}{2}$, $k=1$, $x=frac{3}{4}$.
Note:
$$
binom{a}{k}:=frac{1}{k!}prod_{i=0}^{k-1} (a-i);quad
binom{a+k-1}{k}x^kequiv binom{-a}{k}(-x)^k.
$$
$endgroup$
add a comment |
$begingroup$
We have $S=frac{3}{4}sum_{n=2}^{infty}a_n$ with
$a_n=frac{5 cdot 7 cdot ... cdot (2n+1)}{4 cdot 6 cdot ... cdot (2n)}$. It is easy to see that $a_n ge 1$, hence $sum_{n=2}^{infty}a_n$ is divergent, thus $S= infty$.
$endgroup$
$begingroup$
answer is $47/9$
$endgroup$
– jacky
Jan 7 at 8:47
$begingroup$
Think of the harmonic series $$1+ frac 12 + frac 13 + frac 14 + cdots$$ The terms are strictly decreasing and tend to $0$, yet the series still diverges. Here, you have a series where not only do the terms dont tend to $0$, but are in fact strictly increasing (when put into the form as suggested in this answer)! There is thus no way that this series is ever going to converge.
$endgroup$
– glowstonetrees
Jan 7 at 9:19
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Based on the hint of lab bhattacharjee
$$S=frac{5}{2}left(frac{3}{8}right)+frac{5cdot7}{2cdot3}left(frac{3}{8}right)^2+frac{5cdot7cdot9}{2cdot3cdot4}left(frac{3}{8}right)^3+ cdots\
=frac{4}{3}cdotfrac{2}{3}sum_{n=2}^infty
frac{-frac{3}{2}left(-frac{3}{2}-1right)cdotsleft(-frac{3}{2}-n+1right)}{n!}left(-frac{3}{4}right)^n\
=frac{8}{9}left[left(1-frac{3}{4}right)^{-frac{3}{2}}-1-frac{-frac{3}{2}}{1!}left(-frac{3}{4}right)right]\=frac{8}{9}left[8-1-frac{9}{8}right]=frac{47}{9}.
$$
Generally for arbitrary $ainmathbb{R}_+$, $kinmathbb{Z}_+$, $|x|<1$:
$$
sum_{N=1}^infty prod_{n=1}^Nleft(1+frac{a-1}{k+n}right)x=
frac{k!}{a(a+1)cdots(a+k-1)x^k}sum_{N=k+1}^inftyfrac{a(a+1)cdots(a+N-1)}{N!}x^N\
=left[binom{a+k-1}{k}x^kright]^{-1}left[left(1-xright)^{-a}-sum_{N=0}^kbinom{a+N-1}{N}x^Nright].
$$
For your problem: $a=frac{3}{2}$, $k=1$, $x=frac{3}{4}$.
Note:
$$
binom{a}{k}:=frac{1}{k!}prod_{i=0}^{k-1} (a-i);quad
binom{a+k-1}{k}x^kequiv binom{-a}{k}(-x)^k.
$$
$endgroup$
add a comment |
$begingroup$
Based on the hint of lab bhattacharjee
$$S=frac{5}{2}left(frac{3}{8}right)+frac{5cdot7}{2cdot3}left(frac{3}{8}right)^2+frac{5cdot7cdot9}{2cdot3cdot4}left(frac{3}{8}right)^3+ cdots\
=frac{4}{3}cdotfrac{2}{3}sum_{n=2}^infty
frac{-frac{3}{2}left(-frac{3}{2}-1right)cdotsleft(-frac{3}{2}-n+1right)}{n!}left(-frac{3}{4}right)^n\
=frac{8}{9}left[left(1-frac{3}{4}right)^{-frac{3}{2}}-1-frac{-frac{3}{2}}{1!}left(-frac{3}{4}right)right]\=frac{8}{9}left[8-1-frac{9}{8}right]=frac{47}{9}.
$$
Generally for arbitrary $ainmathbb{R}_+$, $kinmathbb{Z}_+$, $|x|<1$:
$$
sum_{N=1}^infty prod_{n=1}^Nleft(1+frac{a-1}{k+n}right)x=
frac{k!}{a(a+1)cdots(a+k-1)x^k}sum_{N=k+1}^inftyfrac{a(a+1)cdots(a+N-1)}{N!}x^N\
=left[binom{a+k-1}{k}x^kright]^{-1}left[left(1-xright)^{-a}-sum_{N=0}^kbinom{a+N-1}{N}x^Nright].
$$
For your problem: $a=frac{3}{2}$, $k=1$, $x=frac{3}{4}$.
Note:
$$
binom{a}{k}:=frac{1}{k!}prod_{i=0}^{k-1} (a-i);quad
binom{a+k-1}{k}x^kequiv binom{-a}{k}(-x)^k.
$$
$endgroup$
add a comment |
$begingroup$
Based on the hint of lab bhattacharjee
$$S=frac{5}{2}left(frac{3}{8}right)+frac{5cdot7}{2cdot3}left(frac{3}{8}right)^2+frac{5cdot7cdot9}{2cdot3cdot4}left(frac{3}{8}right)^3+ cdots\
=frac{4}{3}cdotfrac{2}{3}sum_{n=2}^infty
frac{-frac{3}{2}left(-frac{3}{2}-1right)cdotsleft(-frac{3}{2}-n+1right)}{n!}left(-frac{3}{4}right)^n\
=frac{8}{9}left[left(1-frac{3}{4}right)^{-frac{3}{2}}-1-frac{-frac{3}{2}}{1!}left(-frac{3}{4}right)right]\=frac{8}{9}left[8-1-frac{9}{8}right]=frac{47}{9}.
$$
Generally for arbitrary $ainmathbb{R}_+$, $kinmathbb{Z}_+$, $|x|<1$:
$$
sum_{N=1}^infty prod_{n=1}^Nleft(1+frac{a-1}{k+n}right)x=
frac{k!}{a(a+1)cdots(a+k-1)x^k}sum_{N=k+1}^inftyfrac{a(a+1)cdots(a+N-1)}{N!}x^N\
=left[binom{a+k-1}{k}x^kright]^{-1}left[left(1-xright)^{-a}-sum_{N=0}^kbinom{a+N-1}{N}x^Nright].
$$
For your problem: $a=frac{3}{2}$, $k=1$, $x=frac{3}{4}$.
Note:
$$
binom{a}{k}:=frac{1}{k!}prod_{i=0}^{k-1} (a-i);quad
binom{a+k-1}{k}x^kequiv binom{-a}{k}(-x)^k.
$$
$endgroup$
Based on the hint of lab bhattacharjee
$$S=frac{5}{2}left(frac{3}{8}right)+frac{5cdot7}{2cdot3}left(frac{3}{8}right)^2+frac{5cdot7cdot9}{2cdot3cdot4}left(frac{3}{8}right)^3+ cdots\
=frac{4}{3}cdotfrac{2}{3}sum_{n=2}^infty
frac{-frac{3}{2}left(-frac{3}{2}-1right)cdotsleft(-frac{3}{2}-n+1right)}{n!}left(-frac{3}{4}right)^n\
=frac{8}{9}left[left(1-frac{3}{4}right)^{-frac{3}{2}}-1-frac{-frac{3}{2}}{1!}left(-frac{3}{4}right)right]\=frac{8}{9}left[8-1-frac{9}{8}right]=frac{47}{9}.
$$
Generally for arbitrary $ainmathbb{R}_+$, $kinmathbb{Z}_+$, $|x|<1$:
$$
sum_{N=1}^infty prod_{n=1}^Nleft(1+frac{a-1}{k+n}right)x=
frac{k!}{a(a+1)cdots(a+k-1)x^k}sum_{N=k+1}^inftyfrac{a(a+1)cdots(a+N-1)}{N!}x^N\
=left[binom{a+k-1}{k}x^kright]^{-1}left[left(1-xright)^{-a}-sum_{N=0}^kbinom{a+N-1}{N}x^Nright].
$$
For your problem: $a=frac{3}{2}$, $k=1$, $x=frac{3}{4}$.
Note:
$$
binom{a}{k}:=frac{1}{k!}prod_{i=0}^{k-1} (a-i);quad
binom{a+k-1}{k}x^kequiv binom{-a}{k}(-x)^k.
$$
edited Jan 8 at 11:04
answered Jan 7 at 12:26
useruser
3,8551627
3,8551627
add a comment |
add a comment |
$begingroup$
We have $S=frac{3}{4}sum_{n=2}^{infty}a_n$ with
$a_n=frac{5 cdot 7 cdot ... cdot (2n+1)}{4 cdot 6 cdot ... cdot (2n)}$. It is easy to see that $a_n ge 1$, hence $sum_{n=2}^{infty}a_n$ is divergent, thus $S= infty$.
$endgroup$
$begingroup$
answer is $47/9$
$endgroup$
– jacky
Jan 7 at 8:47
$begingroup$
Think of the harmonic series $$1+ frac 12 + frac 13 + frac 14 + cdots$$ The terms are strictly decreasing and tend to $0$, yet the series still diverges. Here, you have a series where not only do the terms dont tend to $0$, but are in fact strictly increasing (when put into the form as suggested in this answer)! There is thus no way that this series is ever going to converge.
$endgroup$
– glowstonetrees
Jan 7 at 9:19
add a comment |
$begingroup$
We have $S=frac{3}{4}sum_{n=2}^{infty}a_n$ with
$a_n=frac{5 cdot 7 cdot ... cdot (2n+1)}{4 cdot 6 cdot ... cdot (2n)}$. It is easy to see that $a_n ge 1$, hence $sum_{n=2}^{infty}a_n$ is divergent, thus $S= infty$.
$endgroup$
$begingroup$
answer is $47/9$
$endgroup$
– jacky
Jan 7 at 8:47
$begingroup$
Think of the harmonic series $$1+ frac 12 + frac 13 + frac 14 + cdots$$ The terms are strictly decreasing and tend to $0$, yet the series still diverges. Here, you have a series where not only do the terms dont tend to $0$, but are in fact strictly increasing (when put into the form as suggested in this answer)! There is thus no way that this series is ever going to converge.
$endgroup$
– glowstonetrees
Jan 7 at 9:19
add a comment |
$begingroup$
We have $S=frac{3}{4}sum_{n=2}^{infty}a_n$ with
$a_n=frac{5 cdot 7 cdot ... cdot (2n+1)}{4 cdot 6 cdot ... cdot (2n)}$. It is easy to see that $a_n ge 1$, hence $sum_{n=2}^{infty}a_n$ is divergent, thus $S= infty$.
$endgroup$
We have $S=frac{3}{4}sum_{n=2}^{infty}a_n$ with
$a_n=frac{5 cdot 7 cdot ... cdot (2n+1)}{4 cdot 6 cdot ... cdot (2n)}$. It is easy to see that $a_n ge 1$, hence $sum_{n=2}^{infty}a_n$ is divergent, thus $S= infty$.
answered Jan 7 at 7:43
FredFred
44.7k1846
44.7k1846
$begingroup$
answer is $47/9$
$endgroup$
– jacky
Jan 7 at 8:47
$begingroup$
Think of the harmonic series $$1+ frac 12 + frac 13 + frac 14 + cdots$$ The terms are strictly decreasing and tend to $0$, yet the series still diverges. Here, you have a series where not only do the terms dont tend to $0$, but are in fact strictly increasing (when put into the form as suggested in this answer)! There is thus no way that this series is ever going to converge.
$endgroup$
– glowstonetrees
Jan 7 at 9:19
add a comment |
$begingroup$
answer is $47/9$
$endgroup$
– jacky
Jan 7 at 8:47
$begingroup$
Think of the harmonic series $$1+ frac 12 + frac 13 + frac 14 + cdots$$ The terms are strictly decreasing and tend to $0$, yet the series still diverges. Here, you have a series where not only do the terms dont tend to $0$, but are in fact strictly increasing (when put into the form as suggested in this answer)! There is thus no way that this series is ever going to converge.
$endgroup$
– glowstonetrees
Jan 7 at 9:19
$begingroup$
answer is $47/9$
$endgroup$
– jacky
Jan 7 at 8:47
$begingroup$
answer is $47/9$
$endgroup$
– jacky
Jan 7 at 8:47
$begingroup$
Think of the harmonic series $$1+ frac 12 + frac 13 + frac 14 + cdots$$ The terms are strictly decreasing and tend to $0$, yet the series still diverges. Here, you have a series where not only do the terms dont tend to $0$, but are in fact strictly increasing (when put into the form as suggested in this answer)! There is thus no way that this series is ever going to converge.
$endgroup$
– glowstonetrees
Jan 7 at 9:19
$begingroup$
Think of the harmonic series $$1+ frac 12 + frac 13 + frac 14 + cdots$$ The terms are strictly decreasing and tend to $0$, yet the series still diverges. Here, you have a series where not only do the terms dont tend to $0$, but are in fact strictly increasing (when put into the form as suggested in this answer)! There is thus no way that this series is ever going to converge.
$endgroup$
– glowstonetrees
Jan 7 at 9:19
add a comment |
$begingroup$
You are factoring only one $3/4$ from the series.
$endgroup$
– EuxhenH
Jan 7 at 7:38
1
$begingroup$
math.stackexchange.com/questions/746388/…
$endgroup$
– lab bhattacharjee
Jan 7 at 7:40
$begingroup$
Your title is overly redundant: a series is already a sum of infinite terms.
$endgroup$
– Jack D'Aurizio
Jan 7 at 12:54