Prove this version of Banach differential fixed point












3












$begingroup$


Let $I$ a closed interval and $f:Ito mathbb{R}$ a differentiable function such that:




  1. $f(I)subseteq I$

  2. Exists $pinmathbb{N}$ and $cinmathbb{R}$ such that $g=fcirc f cdots circ f=f^p$ satisfy $|g'(x)|leq c< 1$, $forall xin I$.


Prove that:



a. Exists a unique $ain I$ such that $f(a)=a$.



b. For all $xin I$,$lim_{nto infty} f^n (x)=a$.










share|cite|improve this question









$endgroup$

















    3












    $begingroup$


    Let $I$ a closed interval and $f:Ito mathbb{R}$ a differentiable function such that:




    1. $f(I)subseteq I$

    2. Exists $pinmathbb{N}$ and $cinmathbb{R}$ such that $g=fcirc f cdots circ f=f^p$ satisfy $|g'(x)|leq c< 1$, $forall xin I$.


    Prove that:



    a. Exists a unique $ain I$ such that $f(a)=a$.



    b. For all $xin I$,$lim_{nto infty} f^n (x)=a$.










    share|cite|improve this question









    $endgroup$















      3












      3








      3





      $begingroup$


      Let $I$ a closed interval and $f:Ito mathbb{R}$ a differentiable function such that:




      1. $f(I)subseteq I$

      2. Exists $pinmathbb{N}$ and $cinmathbb{R}$ such that $g=fcirc f cdots circ f=f^p$ satisfy $|g'(x)|leq c< 1$, $forall xin I$.


      Prove that:



      a. Exists a unique $ain I$ such that $f(a)=a$.



      b. For all $xin I$,$lim_{nto infty} f^n (x)=a$.










      share|cite|improve this question









      $endgroup$




      Let $I$ a closed interval and $f:Ito mathbb{R}$ a differentiable function such that:




      1. $f(I)subseteq I$

      2. Exists $pinmathbb{N}$ and $cinmathbb{R}$ such that $g=fcirc f cdots circ f=f^p$ satisfy $|g'(x)|leq c< 1$, $forall xin I$.


      Prove that:



      a. Exists a unique $ain I$ such that $f(a)=a$.



      b. For all $xin I$,$lim_{nto infty} f^n (x)=a$.







      calculus fixed-point-theorems






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 7 at 7:36









      Raul_MFerRaul_MFer

      333




      333






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          First off, we may apply the fixed point theorem to $g$, since $|g'(x)|leq c<1$ for all $x$ and $g(I)subset I$, and we obtain that $g^{n}(x)to a$ for all $x$, for some $ain I$ with $g(a)=a$.



          Now fix $xin I$, take the sequence $left{f^{n}(x)right}_{nin mathbb{N}}$ and write it as a union of a finite amount of subsequences in the following way
          $$left{f^{n}(x)right}_{nin mathbb{N}}=bigcup_{j=0}^{p-1}left{f^{np+j}(x)right}_{nin mathbb{N}}=bigcup_{j=0}^{p-1}left{g^{n}(f^{j}(x))right}_{nin mathbb{N}} $$
          since the sequences $left{g^{n}(f^{j}(x))right}_{nin mathbb{N}}$ all converge to the same number $a$ for $j=0,dots, p-1$, then the whole sequence $left{f^{n}(x)right}$ must converge to $a$.



          To see that $f(a)=a$, notice that $g(a)=a$ implies that $f^{np}(a)=a$ for all $nin mathbb{N}$. Therefore we have $f^{np+j}(a)=f^{j}(f^{np}(a))=f^{j}(a)$ for all $nin mathbb{N}$ and $jin left{0,dots,p-1right}$, i.e. the sequence $left{f^{n}(a)right}$ is periodic with period $p$. On the other hand we know that $lim_{nto +infty}f^n(a)=a$, and so necessarily $f^{n}(a)=a$ for all $nin mathbb{N}$. In particular, $f(a)=a$.



          Alternatively, $$g(f(a))=f^{p}(f(a))=f(f^{p}(a))=f(g(a))=f(a)$$
          i.e. $f(a)$ is a fixed point for $g$. But $a$ is the unique fixed point for $g$, thus $f(a)=a$.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064741%2fprove-this-version-of-banach-differential-fixed-point%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            First off, we may apply the fixed point theorem to $g$, since $|g'(x)|leq c<1$ for all $x$ and $g(I)subset I$, and we obtain that $g^{n}(x)to a$ for all $x$, for some $ain I$ with $g(a)=a$.



            Now fix $xin I$, take the sequence $left{f^{n}(x)right}_{nin mathbb{N}}$ and write it as a union of a finite amount of subsequences in the following way
            $$left{f^{n}(x)right}_{nin mathbb{N}}=bigcup_{j=0}^{p-1}left{f^{np+j}(x)right}_{nin mathbb{N}}=bigcup_{j=0}^{p-1}left{g^{n}(f^{j}(x))right}_{nin mathbb{N}} $$
            since the sequences $left{g^{n}(f^{j}(x))right}_{nin mathbb{N}}$ all converge to the same number $a$ for $j=0,dots, p-1$, then the whole sequence $left{f^{n}(x)right}$ must converge to $a$.



            To see that $f(a)=a$, notice that $g(a)=a$ implies that $f^{np}(a)=a$ for all $nin mathbb{N}$. Therefore we have $f^{np+j}(a)=f^{j}(f^{np}(a))=f^{j}(a)$ for all $nin mathbb{N}$ and $jin left{0,dots,p-1right}$, i.e. the sequence $left{f^{n}(a)right}$ is periodic with period $p$. On the other hand we know that $lim_{nto +infty}f^n(a)=a$, and so necessarily $f^{n}(a)=a$ for all $nin mathbb{N}$. In particular, $f(a)=a$.



            Alternatively, $$g(f(a))=f^{p}(f(a))=f(f^{p}(a))=f(g(a))=f(a)$$
            i.e. $f(a)$ is a fixed point for $g$. But $a$ is the unique fixed point for $g$, thus $f(a)=a$.






            share|cite|improve this answer











            $endgroup$


















              0












              $begingroup$

              First off, we may apply the fixed point theorem to $g$, since $|g'(x)|leq c<1$ for all $x$ and $g(I)subset I$, and we obtain that $g^{n}(x)to a$ for all $x$, for some $ain I$ with $g(a)=a$.



              Now fix $xin I$, take the sequence $left{f^{n}(x)right}_{nin mathbb{N}}$ and write it as a union of a finite amount of subsequences in the following way
              $$left{f^{n}(x)right}_{nin mathbb{N}}=bigcup_{j=0}^{p-1}left{f^{np+j}(x)right}_{nin mathbb{N}}=bigcup_{j=0}^{p-1}left{g^{n}(f^{j}(x))right}_{nin mathbb{N}} $$
              since the sequences $left{g^{n}(f^{j}(x))right}_{nin mathbb{N}}$ all converge to the same number $a$ for $j=0,dots, p-1$, then the whole sequence $left{f^{n}(x)right}$ must converge to $a$.



              To see that $f(a)=a$, notice that $g(a)=a$ implies that $f^{np}(a)=a$ for all $nin mathbb{N}$. Therefore we have $f^{np+j}(a)=f^{j}(f^{np}(a))=f^{j}(a)$ for all $nin mathbb{N}$ and $jin left{0,dots,p-1right}$, i.e. the sequence $left{f^{n}(a)right}$ is periodic with period $p$. On the other hand we know that $lim_{nto +infty}f^n(a)=a$, and so necessarily $f^{n}(a)=a$ for all $nin mathbb{N}$. In particular, $f(a)=a$.



              Alternatively, $$g(f(a))=f^{p}(f(a))=f(f^{p}(a))=f(g(a))=f(a)$$
              i.e. $f(a)$ is a fixed point for $g$. But $a$ is the unique fixed point for $g$, thus $f(a)=a$.






              share|cite|improve this answer











              $endgroup$
















                0












                0








                0





                $begingroup$

                First off, we may apply the fixed point theorem to $g$, since $|g'(x)|leq c<1$ for all $x$ and $g(I)subset I$, and we obtain that $g^{n}(x)to a$ for all $x$, for some $ain I$ with $g(a)=a$.



                Now fix $xin I$, take the sequence $left{f^{n}(x)right}_{nin mathbb{N}}$ and write it as a union of a finite amount of subsequences in the following way
                $$left{f^{n}(x)right}_{nin mathbb{N}}=bigcup_{j=0}^{p-1}left{f^{np+j}(x)right}_{nin mathbb{N}}=bigcup_{j=0}^{p-1}left{g^{n}(f^{j}(x))right}_{nin mathbb{N}} $$
                since the sequences $left{g^{n}(f^{j}(x))right}_{nin mathbb{N}}$ all converge to the same number $a$ for $j=0,dots, p-1$, then the whole sequence $left{f^{n}(x)right}$ must converge to $a$.



                To see that $f(a)=a$, notice that $g(a)=a$ implies that $f^{np}(a)=a$ for all $nin mathbb{N}$. Therefore we have $f^{np+j}(a)=f^{j}(f^{np}(a))=f^{j}(a)$ for all $nin mathbb{N}$ and $jin left{0,dots,p-1right}$, i.e. the sequence $left{f^{n}(a)right}$ is periodic with period $p$. On the other hand we know that $lim_{nto +infty}f^n(a)=a$, and so necessarily $f^{n}(a)=a$ for all $nin mathbb{N}$. In particular, $f(a)=a$.



                Alternatively, $$g(f(a))=f^{p}(f(a))=f(f^{p}(a))=f(g(a))=f(a)$$
                i.e. $f(a)$ is a fixed point for $g$. But $a$ is the unique fixed point for $g$, thus $f(a)=a$.






                share|cite|improve this answer











                $endgroup$



                First off, we may apply the fixed point theorem to $g$, since $|g'(x)|leq c<1$ for all $x$ and $g(I)subset I$, and we obtain that $g^{n}(x)to a$ for all $x$, for some $ain I$ with $g(a)=a$.



                Now fix $xin I$, take the sequence $left{f^{n}(x)right}_{nin mathbb{N}}$ and write it as a union of a finite amount of subsequences in the following way
                $$left{f^{n}(x)right}_{nin mathbb{N}}=bigcup_{j=0}^{p-1}left{f^{np+j}(x)right}_{nin mathbb{N}}=bigcup_{j=0}^{p-1}left{g^{n}(f^{j}(x))right}_{nin mathbb{N}} $$
                since the sequences $left{g^{n}(f^{j}(x))right}_{nin mathbb{N}}$ all converge to the same number $a$ for $j=0,dots, p-1$, then the whole sequence $left{f^{n}(x)right}$ must converge to $a$.



                To see that $f(a)=a$, notice that $g(a)=a$ implies that $f^{np}(a)=a$ for all $nin mathbb{N}$. Therefore we have $f^{np+j}(a)=f^{j}(f^{np}(a))=f^{j}(a)$ for all $nin mathbb{N}$ and $jin left{0,dots,p-1right}$, i.e. the sequence $left{f^{n}(a)right}$ is periodic with period $p$. On the other hand we know that $lim_{nto +infty}f^n(a)=a$, and so necessarily $f^{n}(a)=a$ for all $nin mathbb{N}$. In particular, $f(a)=a$.



                Alternatively, $$g(f(a))=f^{p}(f(a))=f(f^{p}(a))=f(g(a))=f(a)$$
                i.e. $f(a)$ is a fixed point for $g$. But $a$ is the unique fixed point for $g$, thus $f(a)=a$.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jan 7 at 8:47

























                answered Jan 7 at 8:29









                Lorenzo QuarisaLorenzo Quarisa

                3,312518




                3,312518






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064741%2fprove-this-version-of-banach-differential-fixed-point%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    1300-talet

                    1300-talet

                    Display a custom attribute below product name in the front-end Magento 1.9.3.8