Prove this version of Banach differential fixed point
$begingroup$
Let $I$ a closed interval and $f:Ito mathbb{R}$ a differentiable function such that:
- $f(I)subseteq I$
- Exists $pinmathbb{N}$ and $cinmathbb{R}$ such that $g=fcirc f cdots circ f=f^p$ satisfy $|g'(x)|leq c< 1$, $forall xin I$.
Prove that:
a. Exists a unique $ain I$ such that $f(a)=a$.
b. For all $xin I$,$lim_{nto infty} f^n (x)=a$.
calculus fixed-point-theorems
$endgroup$
add a comment |
$begingroup$
Let $I$ a closed interval and $f:Ito mathbb{R}$ a differentiable function such that:
- $f(I)subseteq I$
- Exists $pinmathbb{N}$ and $cinmathbb{R}$ such that $g=fcirc f cdots circ f=f^p$ satisfy $|g'(x)|leq c< 1$, $forall xin I$.
Prove that:
a. Exists a unique $ain I$ such that $f(a)=a$.
b. For all $xin I$,$lim_{nto infty} f^n (x)=a$.
calculus fixed-point-theorems
$endgroup$
add a comment |
$begingroup$
Let $I$ a closed interval and $f:Ito mathbb{R}$ a differentiable function such that:
- $f(I)subseteq I$
- Exists $pinmathbb{N}$ and $cinmathbb{R}$ such that $g=fcirc f cdots circ f=f^p$ satisfy $|g'(x)|leq c< 1$, $forall xin I$.
Prove that:
a. Exists a unique $ain I$ such that $f(a)=a$.
b. For all $xin I$,$lim_{nto infty} f^n (x)=a$.
calculus fixed-point-theorems
$endgroup$
Let $I$ a closed interval and $f:Ito mathbb{R}$ a differentiable function such that:
- $f(I)subseteq I$
- Exists $pinmathbb{N}$ and $cinmathbb{R}$ such that $g=fcirc f cdots circ f=f^p$ satisfy $|g'(x)|leq c< 1$, $forall xin I$.
Prove that:
a. Exists a unique $ain I$ such that $f(a)=a$.
b. For all $xin I$,$lim_{nto infty} f^n (x)=a$.
calculus fixed-point-theorems
calculus fixed-point-theorems
asked Jan 7 at 7:36
Raul_MFerRaul_MFer
333
333
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
First off, we may apply the fixed point theorem to $g$, since $|g'(x)|leq c<1$ for all $x$ and $g(I)subset I$, and we obtain that $g^{n}(x)to a$ for all $x$, for some $ain I$ with $g(a)=a$.
Now fix $xin I$, take the sequence $left{f^{n}(x)right}_{nin mathbb{N}}$ and write it as a union of a finite amount of subsequences in the following way
$$left{f^{n}(x)right}_{nin mathbb{N}}=bigcup_{j=0}^{p-1}left{f^{np+j}(x)right}_{nin mathbb{N}}=bigcup_{j=0}^{p-1}left{g^{n}(f^{j}(x))right}_{nin mathbb{N}} $$
since the sequences $left{g^{n}(f^{j}(x))right}_{nin mathbb{N}}$ all converge to the same number $a$ for $j=0,dots, p-1$, then the whole sequence $left{f^{n}(x)right}$ must converge to $a$.
To see that $f(a)=a$, notice that $g(a)=a$ implies that $f^{np}(a)=a$ for all $nin mathbb{N}$. Therefore we have $f^{np+j}(a)=f^{j}(f^{np}(a))=f^{j}(a)$ for all $nin mathbb{N}$ and $jin left{0,dots,p-1right}$, i.e. the sequence $left{f^{n}(a)right}$ is periodic with period $p$. On the other hand we know that $lim_{nto +infty}f^n(a)=a$, and so necessarily $f^{n}(a)=a$ for all $nin mathbb{N}$. In particular, $f(a)=a$.
Alternatively, $$g(f(a))=f^{p}(f(a))=f(f^{p}(a))=f(g(a))=f(a)$$
i.e. $f(a)$ is a fixed point for $g$. But $a$ is the unique fixed point for $g$, thus $f(a)=a$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064741%2fprove-this-version-of-banach-differential-fixed-point%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
First off, we may apply the fixed point theorem to $g$, since $|g'(x)|leq c<1$ for all $x$ and $g(I)subset I$, and we obtain that $g^{n}(x)to a$ for all $x$, for some $ain I$ with $g(a)=a$.
Now fix $xin I$, take the sequence $left{f^{n}(x)right}_{nin mathbb{N}}$ and write it as a union of a finite amount of subsequences in the following way
$$left{f^{n}(x)right}_{nin mathbb{N}}=bigcup_{j=0}^{p-1}left{f^{np+j}(x)right}_{nin mathbb{N}}=bigcup_{j=0}^{p-1}left{g^{n}(f^{j}(x))right}_{nin mathbb{N}} $$
since the sequences $left{g^{n}(f^{j}(x))right}_{nin mathbb{N}}$ all converge to the same number $a$ for $j=0,dots, p-1$, then the whole sequence $left{f^{n}(x)right}$ must converge to $a$.
To see that $f(a)=a$, notice that $g(a)=a$ implies that $f^{np}(a)=a$ for all $nin mathbb{N}$. Therefore we have $f^{np+j}(a)=f^{j}(f^{np}(a))=f^{j}(a)$ for all $nin mathbb{N}$ and $jin left{0,dots,p-1right}$, i.e. the sequence $left{f^{n}(a)right}$ is periodic with period $p$. On the other hand we know that $lim_{nto +infty}f^n(a)=a$, and so necessarily $f^{n}(a)=a$ for all $nin mathbb{N}$. In particular, $f(a)=a$.
Alternatively, $$g(f(a))=f^{p}(f(a))=f(f^{p}(a))=f(g(a))=f(a)$$
i.e. $f(a)$ is a fixed point for $g$. But $a$ is the unique fixed point for $g$, thus $f(a)=a$.
$endgroup$
add a comment |
$begingroup$
First off, we may apply the fixed point theorem to $g$, since $|g'(x)|leq c<1$ for all $x$ and $g(I)subset I$, and we obtain that $g^{n}(x)to a$ for all $x$, for some $ain I$ with $g(a)=a$.
Now fix $xin I$, take the sequence $left{f^{n}(x)right}_{nin mathbb{N}}$ and write it as a union of a finite amount of subsequences in the following way
$$left{f^{n}(x)right}_{nin mathbb{N}}=bigcup_{j=0}^{p-1}left{f^{np+j}(x)right}_{nin mathbb{N}}=bigcup_{j=0}^{p-1}left{g^{n}(f^{j}(x))right}_{nin mathbb{N}} $$
since the sequences $left{g^{n}(f^{j}(x))right}_{nin mathbb{N}}$ all converge to the same number $a$ for $j=0,dots, p-1$, then the whole sequence $left{f^{n}(x)right}$ must converge to $a$.
To see that $f(a)=a$, notice that $g(a)=a$ implies that $f^{np}(a)=a$ for all $nin mathbb{N}$. Therefore we have $f^{np+j}(a)=f^{j}(f^{np}(a))=f^{j}(a)$ for all $nin mathbb{N}$ and $jin left{0,dots,p-1right}$, i.e. the sequence $left{f^{n}(a)right}$ is periodic with period $p$. On the other hand we know that $lim_{nto +infty}f^n(a)=a$, and so necessarily $f^{n}(a)=a$ for all $nin mathbb{N}$. In particular, $f(a)=a$.
Alternatively, $$g(f(a))=f^{p}(f(a))=f(f^{p}(a))=f(g(a))=f(a)$$
i.e. $f(a)$ is a fixed point for $g$. But $a$ is the unique fixed point for $g$, thus $f(a)=a$.
$endgroup$
add a comment |
$begingroup$
First off, we may apply the fixed point theorem to $g$, since $|g'(x)|leq c<1$ for all $x$ and $g(I)subset I$, and we obtain that $g^{n}(x)to a$ for all $x$, for some $ain I$ with $g(a)=a$.
Now fix $xin I$, take the sequence $left{f^{n}(x)right}_{nin mathbb{N}}$ and write it as a union of a finite amount of subsequences in the following way
$$left{f^{n}(x)right}_{nin mathbb{N}}=bigcup_{j=0}^{p-1}left{f^{np+j}(x)right}_{nin mathbb{N}}=bigcup_{j=0}^{p-1}left{g^{n}(f^{j}(x))right}_{nin mathbb{N}} $$
since the sequences $left{g^{n}(f^{j}(x))right}_{nin mathbb{N}}$ all converge to the same number $a$ for $j=0,dots, p-1$, then the whole sequence $left{f^{n}(x)right}$ must converge to $a$.
To see that $f(a)=a$, notice that $g(a)=a$ implies that $f^{np}(a)=a$ for all $nin mathbb{N}$. Therefore we have $f^{np+j}(a)=f^{j}(f^{np}(a))=f^{j}(a)$ for all $nin mathbb{N}$ and $jin left{0,dots,p-1right}$, i.e. the sequence $left{f^{n}(a)right}$ is periodic with period $p$. On the other hand we know that $lim_{nto +infty}f^n(a)=a$, and so necessarily $f^{n}(a)=a$ for all $nin mathbb{N}$. In particular, $f(a)=a$.
Alternatively, $$g(f(a))=f^{p}(f(a))=f(f^{p}(a))=f(g(a))=f(a)$$
i.e. $f(a)$ is a fixed point for $g$. But $a$ is the unique fixed point for $g$, thus $f(a)=a$.
$endgroup$
First off, we may apply the fixed point theorem to $g$, since $|g'(x)|leq c<1$ for all $x$ and $g(I)subset I$, and we obtain that $g^{n}(x)to a$ for all $x$, for some $ain I$ with $g(a)=a$.
Now fix $xin I$, take the sequence $left{f^{n}(x)right}_{nin mathbb{N}}$ and write it as a union of a finite amount of subsequences in the following way
$$left{f^{n}(x)right}_{nin mathbb{N}}=bigcup_{j=0}^{p-1}left{f^{np+j}(x)right}_{nin mathbb{N}}=bigcup_{j=0}^{p-1}left{g^{n}(f^{j}(x))right}_{nin mathbb{N}} $$
since the sequences $left{g^{n}(f^{j}(x))right}_{nin mathbb{N}}$ all converge to the same number $a$ for $j=0,dots, p-1$, then the whole sequence $left{f^{n}(x)right}$ must converge to $a$.
To see that $f(a)=a$, notice that $g(a)=a$ implies that $f^{np}(a)=a$ for all $nin mathbb{N}$. Therefore we have $f^{np+j}(a)=f^{j}(f^{np}(a))=f^{j}(a)$ for all $nin mathbb{N}$ and $jin left{0,dots,p-1right}$, i.e. the sequence $left{f^{n}(a)right}$ is periodic with period $p$. On the other hand we know that $lim_{nto +infty}f^n(a)=a$, and so necessarily $f^{n}(a)=a$ for all $nin mathbb{N}$. In particular, $f(a)=a$.
Alternatively, $$g(f(a))=f^{p}(f(a))=f(f^{p}(a))=f(g(a))=f(a)$$
i.e. $f(a)$ is a fixed point for $g$. But $a$ is the unique fixed point for $g$, thus $f(a)=a$.
edited Jan 7 at 8:47
answered Jan 7 at 8:29
Lorenzo QuarisaLorenzo Quarisa
3,312518
3,312518
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064741%2fprove-this-version-of-banach-differential-fixed-point%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown