Proving that $cosleft(ax-frac{bpi}{2}right)=sin(ax)$ for all $a$, $b$












0












$begingroup$



Prove that $$cosleft(ax-frac{bpi}{2}right)=sin(ax)$$
for all $a$, $b$.




I tried expanding the right side using the angle subtraction formula, but that didn't help much. Any help?










share|cite|improve this question











$endgroup$








  • 4




    $begingroup$
    This is not true, just take $b=0$, then $cos (ax)$ is not equal to $sin (ax)$ for all $a$.
    $endgroup$
    – Anurag A
    Jan 7 at 6:06








  • 3




    $begingroup$
    Or $a=0$ definitely wrong
    $endgroup$
    – Sorfosh
    Jan 7 at 6:09






  • 2




    $begingroup$
    Is it to prove $$cos(ax-fracpi2)=sin(ax)$$
    $endgroup$
    – Shubham Johri
    Jan 7 at 6:14


















0












$begingroup$



Prove that $$cosleft(ax-frac{bpi}{2}right)=sin(ax)$$
for all $a$, $b$.




I tried expanding the right side using the angle subtraction formula, but that didn't help much. Any help?










share|cite|improve this question











$endgroup$








  • 4




    $begingroup$
    This is not true, just take $b=0$, then $cos (ax)$ is not equal to $sin (ax)$ for all $a$.
    $endgroup$
    – Anurag A
    Jan 7 at 6:06








  • 3




    $begingroup$
    Or $a=0$ definitely wrong
    $endgroup$
    – Sorfosh
    Jan 7 at 6:09






  • 2




    $begingroup$
    Is it to prove $$cos(ax-fracpi2)=sin(ax)$$
    $endgroup$
    – Shubham Johri
    Jan 7 at 6:14
















0












0








0





$begingroup$



Prove that $$cosleft(ax-frac{bpi}{2}right)=sin(ax)$$
for all $a$, $b$.




I tried expanding the right side using the angle subtraction formula, but that didn't help much. Any help?










share|cite|improve this question











$endgroup$





Prove that $$cosleft(ax-frac{bpi}{2}right)=sin(ax)$$
for all $a$, $b$.




I tried expanding the right side using the angle subtraction formula, but that didn't help much. Any help?







trigonometry






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 7 at 6:32









Blue

47.8k870152




47.8k870152










asked Jan 7 at 6:04









Anson PangAnson Pang

6215




6215








  • 4




    $begingroup$
    This is not true, just take $b=0$, then $cos (ax)$ is not equal to $sin (ax)$ for all $a$.
    $endgroup$
    – Anurag A
    Jan 7 at 6:06








  • 3




    $begingroup$
    Or $a=0$ definitely wrong
    $endgroup$
    – Sorfosh
    Jan 7 at 6:09






  • 2




    $begingroup$
    Is it to prove $$cos(ax-fracpi2)=sin(ax)$$
    $endgroup$
    – Shubham Johri
    Jan 7 at 6:14
















  • 4




    $begingroup$
    This is not true, just take $b=0$, then $cos (ax)$ is not equal to $sin (ax)$ for all $a$.
    $endgroup$
    – Anurag A
    Jan 7 at 6:06








  • 3




    $begingroup$
    Or $a=0$ definitely wrong
    $endgroup$
    – Sorfosh
    Jan 7 at 6:09






  • 2




    $begingroup$
    Is it to prove $$cos(ax-fracpi2)=sin(ax)$$
    $endgroup$
    – Shubham Johri
    Jan 7 at 6:14










4




4




$begingroup$
This is not true, just take $b=0$, then $cos (ax)$ is not equal to $sin (ax)$ for all $a$.
$endgroup$
– Anurag A
Jan 7 at 6:06






$begingroup$
This is not true, just take $b=0$, then $cos (ax)$ is not equal to $sin (ax)$ for all $a$.
$endgroup$
– Anurag A
Jan 7 at 6:06






3




3




$begingroup$
Or $a=0$ definitely wrong
$endgroup$
– Sorfosh
Jan 7 at 6:09




$begingroup$
Or $a=0$ definitely wrong
$endgroup$
– Sorfosh
Jan 7 at 6:09




2




2




$begingroup$
Is it to prove $$cos(ax-fracpi2)=sin(ax)$$
$endgroup$
– Shubham Johri
Jan 7 at 6:14






$begingroup$
Is it to prove $$cos(ax-fracpi2)=sin(ax)$$
$endgroup$
– Shubham Johri
Jan 7 at 6:14












3 Answers
3






active

oldest

votes


















6












$begingroup$

The formula is true for all $a$ and $x$ if and only if $b=(4n+1)$ for some integer $n$. [If $b$ is of this type use the formula $cos(A+B)=cos (A) cos(B)-sin (A) sin (B)$].






share|cite|improve this answer











$endgroup$













  • $begingroup$
    If $b = frac{left(4n+1right)pi}{2}$, then $-frac{bpi}{2} = -frac{left(4n+1right)pi^2}{4}$. I believe you need to remove the $pi$ from your formula.
    $endgroup$
    – John Omielan
    Jan 7 at 6:14












  • $begingroup$
    @JohnOmielan Very true. Thanks for pointing out.
    $endgroup$
    – Kavi Rama Murthy
    Jan 7 at 6:15



















0












$begingroup$

If $$cosleft(ax-dfrac{bpi}2right)=sin(ax)=cosleft(dfrac{pi}2-axright)$$



$ax-dfrac{bpi}2=2mpipmleft(dfrac{pi}2-axright)$ where $m$ is any integer



$iff2ax-b=4mpm(1-2ax)$



$-implies2ax-b=4m-(1-2x)iff b=1-4m$



$+implies2ax-b=4m+1-2axiff4ax-b=4m+1$



which is dependent on $x$ hence can not be held for all $a,b$






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    If
    $$cosleft(ax-frac{bpi}{2}right)=sin(ax)$$ is true, it means that
    $$f(x)=cosleft(ax-frac{bpi}{2}right)-sin(ax)$$ is $0$.



    So, consider small values of $x$ and use series expansion to get
    $$f(x)=cos left(frac{pi b}{2}right)+x left(a sin left(frac{pi
    b}{2}right)-aright)-frac{1}{2} x^2 left(a^2 cos left(frac{pi
    b}{2}right)right)+frac{1}{6} x^3 left(a^3-a^3 sin left(frac{pi
    b}{2}right)right)+Oleft(x^4right)$$



    This would imply
    $$cos left(frac{pi b}{2}right)=0 implies b=4n+1$$ and if $b=4n+1$ all terms properly cancel.






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064704%2fproving-that-cos-leftax-fracb-pi2-right-sinax-for-all-a-b%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      6












      $begingroup$

      The formula is true for all $a$ and $x$ if and only if $b=(4n+1)$ for some integer $n$. [If $b$ is of this type use the formula $cos(A+B)=cos (A) cos(B)-sin (A) sin (B)$].






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        If $b = frac{left(4n+1right)pi}{2}$, then $-frac{bpi}{2} = -frac{left(4n+1right)pi^2}{4}$. I believe you need to remove the $pi$ from your formula.
        $endgroup$
        – John Omielan
        Jan 7 at 6:14












      • $begingroup$
        @JohnOmielan Very true. Thanks for pointing out.
        $endgroup$
        – Kavi Rama Murthy
        Jan 7 at 6:15
















      6












      $begingroup$

      The formula is true for all $a$ and $x$ if and only if $b=(4n+1)$ for some integer $n$. [If $b$ is of this type use the formula $cos(A+B)=cos (A) cos(B)-sin (A) sin (B)$].






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        If $b = frac{left(4n+1right)pi}{2}$, then $-frac{bpi}{2} = -frac{left(4n+1right)pi^2}{4}$. I believe you need to remove the $pi$ from your formula.
        $endgroup$
        – John Omielan
        Jan 7 at 6:14












      • $begingroup$
        @JohnOmielan Very true. Thanks for pointing out.
        $endgroup$
        – Kavi Rama Murthy
        Jan 7 at 6:15














      6












      6








      6





      $begingroup$

      The formula is true for all $a$ and $x$ if and only if $b=(4n+1)$ for some integer $n$. [If $b$ is of this type use the formula $cos(A+B)=cos (A) cos(B)-sin (A) sin (B)$].






      share|cite|improve this answer











      $endgroup$



      The formula is true for all $a$ and $x$ if and only if $b=(4n+1)$ for some integer $n$. [If $b$ is of this type use the formula $cos(A+B)=cos (A) cos(B)-sin (A) sin (B)$].







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Jan 7 at 6:15

























      answered Jan 7 at 6:11









      Kavi Rama MurthyKavi Rama Murthy

      54.4k32055




      54.4k32055












      • $begingroup$
        If $b = frac{left(4n+1right)pi}{2}$, then $-frac{bpi}{2} = -frac{left(4n+1right)pi^2}{4}$. I believe you need to remove the $pi$ from your formula.
        $endgroup$
        – John Omielan
        Jan 7 at 6:14












      • $begingroup$
        @JohnOmielan Very true. Thanks for pointing out.
        $endgroup$
        – Kavi Rama Murthy
        Jan 7 at 6:15


















      • $begingroup$
        If $b = frac{left(4n+1right)pi}{2}$, then $-frac{bpi}{2} = -frac{left(4n+1right)pi^2}{4}$. I believe you need to remove the $pi$ from your formula.
        $endgroup$
        – John Omielan
        Jan 7 at 6:14












      • $begingroup$
        @JohnOmielan Very true. Thanks for pointing out.
        $endgroup$
        – Kavi Rama Murthy
        Jan 7 at 6:15
















      $begingroup$
      If $b = frac{left(4n+1right)pi}{2}$, then $-frac{bpi}{2} = -frac{left(4n+1right)pi^2}{4}$. I believe you need to remove the $pi$ from your formula.
      $endgroup$
      – John Omielan
      Jan 7 at 6:14






      $begingroup$
      If $b = frac{left(4n+1right)pi}{2}$, then $-frac{bpi}{2} = -frac{left(4n+1right)pi^2}{4}$. I believe you need to remove the $pi$ from your formula.
      $endgroup$
      – John Omielan
      Jan 7 at 6:14














      $begingroup$
      @JohnOmielan Very true. Thanks for pointing out.
      $endgroup$
      – Kavi Rama Murthy
      Jan 7 at 6:15




      $begingroup$
      @JohnOmielan Very true. Thanks for pointing out.
      $endgroup$
      – Kavi Rama Murthy
      Jan 7 at 6:15











      0












      $begingroup$

      If $$cosleft(ax-dfrac{bpi}2right)=sin(ax)=cosleft(dfrac{pi}2-axright)$$



      $ax-dfrac{bpi}2=2mpipmleft(dfrac{pi}2-axright)$ where $m$ is any integer



      $iff2ax-b=4mpm(1-2ax)$



      $-implies2ax-b=4m-(1-2x)iff b=1-4m$



      $+implies2ax-b=4m+1-2axiff4ax-b=4m+1$



      which is dependent on $x$ hence can not be held for all $a,b$






      share|cite|improve this answer









      $endgroup$


















        0












        $begingroup$

        If $$cosleft(ax-dfrac{bpi}2right)=sin(ax)=cosleft(dfrac{pi}2-axright)$$



        $ax-dfrac{bpi}2=2mpipmleft(dfrac{pi}2-axright)$ where $m$ is any integer



        $iff2ax-b=4mpm(1-2ax)$



        $-implies2ax-b=4m-(1-2x)iff b=1-4m$



        $+implies2ax-b=4m+1-2axiff4ax-b=4m+1$



        which is dependent on $x$ hence can not be held for all $a,b$






        share|cite|improve this answer









        $endgroup$
















          0












          0








          0





          $begingroup$

          If $$cosleft(ax-dfrac{bpi}2right)=sin(ax)=cosleft(dfrac{pi}2-axright)$$



          $ax-dfrac{bpi}2=2mpipmleft(dfrac{pi}2-axright)$ where $m$ is any integer



          $iff2ax-b=4mpm(1-2ax)$



          $-implies2ax-b=4m-(1-2x)iff b=1-4m$



          $+implies2ax-b=4m+1-2axiff4ax-b=4m+1$



          which is dependent on $x$ hence can not be held for all $a,b$






          share|cite|improve this answer









          $endgroup$



          If $$cosleft(ax-dfrac{bpi}2right)=sin(ax)=cosleft(dfrac{pi}2-axright)$$



          $ax-dfrac{bpi}2=2mpipmleft(dfrac{pi}2-axright)$ where $m$ is any integer



          $iff2ax-b=4mpm(1-2ax)$



          $-implies2ax-b=4m-(1-2x)iff b=1-4m$



          $+implies2ax-b=4m+1-2axiff4ax-b=4m+1$



          which is dependent on $x$ hence can not be held for all $a,b$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 7 at 7:32









          lab bhattacharjeelab bhattacharjee

          224k15156274




          224k15156274























              0












              $begingroup$

              If
              $$cosleft(ax-frac{bpi}{2}right)=sin(ax)$$ is true, it means that
              $$f(x)=cosleft(ax-frac{bpi}{2}right)-sin(ax)$$ is $0$.



              So, consider small values of $x$ and use series expansion to get
              $$f(x)=cos left(frac{pi b}{2}right)+x left(a sin left(frac{pi
              b}{2}right)-aright)-frac{1}{2} x^2 left(a^2 cos left(frac{pi
              b}{2}right)right)+frac{1}{6} x^3 left(a^3-a^3 sin left(frac{pi
              b}{2}right)right)+Oleft(x^4right)$$



              This would imply
              $$cos left(frac{pi b}{2}right)=0 implies b=4n+1$$ and if $b=4n+1$ all terms properly cancel.






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                If
                $$cosleft(ax-frac{bpi}{2}right)=sin(ax)$$ is true, it means that
                $$f(x)=cosleft(ax-frac{bpi}{2}right)-sin(ax)$$ is $0$.



                So, consider small values of $x$ and use series expansion to get
                $$f(x)=cos left(frac{pi b}{2}right)+x left(a sin left(frac{pi
                b}{2}right)-aright)-frac{1}{2} x^2 left(a^2 cos left(frac{pi
                b}{2}right)right)+frac{1}{6} x^3 left(a^3-a^3 sin left(frac{pi
                b}{2}right)right)+Oleft(x^4right)$$



                This would imply
                $$cos left(frac{pi b}{2}right)=0 implies b=4n+1$$ and if $b=4n+1$ all terms properly cancel.






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  If
                  $$cosleft(ax-frac{bpi}{2}right)=sin(ax)$$ is true, it means that
                  $$f(x)=cosleft(ax-frac{bpi}{2}right)-sin(ax)$$ is $0$.



                  So, consider small values of $x$ and use series expansion to get
                  $$f(x)=cos left(frac{pi b}{2}right)+x left(a sin left(frac{pi
                  b}{2}right)-aright)-frac{1}{2} x^2 left(a^2 cos left(frac{pi
                  b}{2}right)right)+frac{1}{6} x^3 left(a^3-a^3 sin left(frac{pi
                  b}{2}right)right)+Oleft(x^4right)$$



                  This would imply
                  $$cos left(frac{pi b}{2}right)=0 implies b=4n+1$$ and if $b=4n+1$ all terms properly cancel.






                  share|cite|improve this answer









                  $endgroup$



                  If
                  $$cosleft(ax-frac{bpi}{2}right)=sin(ax)$$ is true, it means that
                  $$f(x)=cosleft(ax-frac{bpi}{2}right)-sin(ax)$$ is $0$.



                  So, consider small values of $x$ and use series expansion to get
                  $$f(x)=cos left(frac{pi b}{2}right)+x left(a sin left(frac{pi
                  b}{2}right)-aright)-frac{1}{2} x^2 left(a^2 cos left(frac{pi
                  b}{2}right)right)+frac{1}{6} x^3 left(a^3-a^3 sin left(frac{pi
                  b}{2}right)right)+Oleft(x^4right)$$



                  This would imply
                  $$cos left(frac{pi b}{2}right)=0 implies b=4n+1$$ and if $b=4n+1$ all terms properly cancel.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 7 at 7:36









                  Claude LeiboviciClaude Leibovici

                  120k1157132




                  120k1157132






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064704%2fproving-that-cos-leftax-fracb-pi2-right-sinax-for-all-a-b%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      1300-talet

                      1300-talet

                      Display a custom attribute below product name in the front-end Magento 1.9.3.8