How to find the derivative of $cos 5x$ using first principle












0












$begingroup$


So my textbook solution uses some discrete method to arrive at -5sinx 5x. But I want to know a simpler technique to get the solution. Can anyone post?










share|cite|improve this question









$endgroup$












  • $begingroup$
    It is rather hard to tell what you are actually after. Do you want an in depth formal proof or just a different pre-packed technique? Also we do not know what method your textbook is using. Can you clarify?
    $endgroup$
    – String
    Jan 6 at 13:13
















0












$begingroup$


So my textbook solution uses some discrete method to arrive at -5sinx 5x. But I want to know a simpler technique to get the solution. Can anyone post?










share|cite|improve this question









$endgroup$












  • $begingroup$
    It is rather hard to tell what you are actually after. Do you want an in depth formal proof or just a different pre-packed technique? Also we do not know what method your textbook is using. Can you clarify?
    $endgroup$
    – String
    Jan 6 at 13:13














0












0








0





$begingroup$


So my textbook solution uses some discrete method to arrive at -5sinx 5x. But I want to know a simpler technique to get the solution. Can anyone post?










share|cite|improve this question









$endgroup$




So my textbook solution uses some discrete method to arrive at -5sinx 5x. But I want to know a simpler technique to get the solution. Can anyone post?







derivatives implicit-differentiation






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 6 at 12:46









Shaikh SakibShaikh Sakib

195




195












  • $begingroup$
    It is rather hard to tell what you are actually after. Do you want an in depth formal proof or just a different pre-packed technique? Also we do not know what method your textbook is using. Can you clarify?
    $endgroup$
    – String
    Jan 6 at 13:13


















  • $begingroup$
    It is rather hard to tell what you are actually after. Do you want an in depth formal proof or just a different pre-packed technique? Also we do not know what method your textbook is using. Can you clarify?
    $endgroup$
    – String
    Jan 6 at 13:13
















$begingroup$
It is rather hard to tell what you are actually after. Do you want an in depth formal proof or just a different pre-packed technique? Also we do not know what method your textbook is using. Can you clarify?
$endgroup$
– String
Jan 6 at 13:13




$begingroup$
It is rather hard to tell what you are actually after. Do you want an in depth formal proof or just a different pre-packed technique? Also we do not know what method your textbook is using. Can you clarify?
$endgroup$
– String
Jan 6 at 13:13










2 Answers
2






active

oldest

votes


















1












$begingroup$

By the definition of a derivative, you have



$$f’(x) = lim_{h to 0}frac{f(x+h)-f(x)}{h}$$



So using $f(x) = cos(5x)$, you get



$$lim_{h to 0}frac{cos(5x+h)-cos(5x)}{h}$$



To get you started, you need to know:




  • $$cos(alpha+beta) = cos (alpha)cos (beta)-sin (alpha)sin (beta)$$

  • $$color{blue}{lim_{x to 0} frac{sin(x)}{x} = 1}$$

  • $$lim_{x to 0}frac{cos(x)-1}{x} = 0$$


For the limit highlighted in blue, you need a simple manipulation since you get a limit in the form $lim_limits{x to 0}frac{sin(nx)}{x}$. Can you take it on from here?






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    $$lim_{hrightarrow0}dfrac{f(x+h)-f(x)}{h}$$
    $$implies lim_{h to 0}frac{cos5(x+h)-cos5(x)}{h}$$
    $$implies lim_{h to 0} frac{left(1-frac{1}{2}5^2(x+h)^2+frac{1}{24}5^4(x+h)^4-.... right)-left((1-frac{1}{2}5^2(x)^2+frac{1}{24}5^4(x)^4-.... right)}{h}$$



    $$implies lim_{h to 0}frac{-frac{1}{2}5^2(2xh+h^2)+frac{1}{24}5^4(4x^3h+6x^2h^2+4xh^3+h^4)...-}{h}$$
    $$implies lim_{h to 0} frac{hleft[-frac{1}{2}5^2(2x+h)+frac{1}{24}5^4(4x^3+6x^2h+4xh^2+h^3)...- right]}{h}$$
    $$implies lim_{h to 0}left[-frac{1}{2}5^2(2x+h)+frac{1}{24}5^4(4x^3+6x^2h+4xh^2+h^3)-... right]$$
    $$implies -5left[frac{1}{2}5(2x)-frac{1}{24}5^3(4x^3)+... right] $$
    $$implies -5left[(5x)-frac{1}{6}(5x)^3+... right] $$
    $$implies -5sin 5x$$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063816%2fhow-to-find-the-derivative-of-cos-5x-using-first-principle%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      By the definition of a derivative, you have



      $$f’(x) = lim_{h to 0}frac{f(x+h)-f(x)}{h}$$



      So using $f(x) = cos(5x)$, you get



      $$lim_{h to 0}frac{cos(5x+h)-cos(5x)}{h}$$



      To get you started, you need to know:




      • $$cos(alpha+beta) = cos (alpha)cos (beta)-sin (alpha)sin (beta)$$

      • $$color{blue}{lim_{x to 0} frac{sin(x)}{x} = 1}$$

      • $$lim_{x to 0}frac{cos(x)-1}{x} = 0$$


      For the limit highlighted in blue, you need a simple manipulation since you get a limit in the form $lim_limits{x to 0}frac{sin(nx)}{x}$. Can you take it on from here?






      share|cite|improve this answer









      $endgroup$


















        1












        $begingroup$

        By the definition of a derivative, you have



        $$f’(x) = lim_{h to 0}frac{f(x+h)-f(x)}{h}$$



        So using $f(x) = cos(5x)$, you get



        $$lim_{h to 0}frac{cos(5x+h)-cos(5x)}{h}$$



        To get you started, you need to know:




        • $$cos(alpha+beta) = cos (alpha)cos (beta)-sin (alpha)sin (beta)$$

        • $$color{blue}{lim_{x to 0} frac{sin(x)}{x} = 1}$$

        • $$lim_{x to 0}frac{cos(x)-1}{x} = 0$$


        For the limit highlighted in blue, you need a simple manipulation since you get a limit in the form $lim_limits{x to 0}frac{sin(nx)}{x}$. Can you take it on from here?






        share|cite|improve this answer









        $endgroup$
















          1












          1








          1





          $begingroup$

          By the definition of a derivative, you have



          $$f’(x) = lim_{h to 0}frac{f(x+h)-f(x)}{h}$$



          So using $f(x) = cos(5x)$, you get



          $$lim_{h to 0}frac{cos(5x+h)-cos(5x)}{h}$$



          To get you started, you need to know:




          • $$cos(alpha+beta) = cos (alpha)cos (beta)-sin (alpha)sin (beta)$$

          • $$color{blue}{lim_{x to 0} frac{sin(x)}{x} = 1}$$

          • $$lim_{x to 0}frac{cos(x)-1}{x} = 0$$


          For the limit highlighted in blue, you need a simple manipulation since you get a limit in the form $lim_limits{x to 0}frac{sin(nx)}{x}$. Can you take it on from here?






          share|cite|improve this answer









          $endgroup$



          By the definition of a derivative, you have



          $$f’(x) = lim_{h to 0}frac{f(x+h)-f(x)}{h}$$



          So using $f(x) = cos(5x)$, you get



          $$lim_{h to 0}frac{cos(5x+h)-cos(5x)}{h}$$



          To get you started, you need to know:




          • $$cos(alpha+beta) = cos (alpha)cos (beta)-sin (alpha)sin (beta)$$

          • $$color{blue}{lim_{x to 0} frac{sin(x)}{x} = 1}$$

          • $$lim_{x to 0}frac{cos(x)-1}{x} = 0$$


          For the limit highlighted in blue, you need a simple manipulation since you get a limit in the form $lim_limits{x to 0}frac{sin(nx)}{x}$. Can you take it on from here?







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 6 at 12:56









          KM101KM101

          5,9661523




          5,9661523























              0












              $begingroup$

              $$lim_{hrightarrow0}dfrac{f(x+h)-f(x)}{h}$$
              $$implies lim_{h to 0}frac{cos5(x+h)-cos5(x)}{h}$$
              $$implies lim_{h to 0} frac{left(1-frac{1}{2}5^2(x+h)^2+frac{1}{24}5^4(x+h)^4-.... right)-left((1-frac{1}{2}5^2(x)^2+frac{1}{24}5^4(x)^4-.... right)}{h}$$



              $$implies lim_{h to 0}frac{-frac{1}{2}5^2(2xh+h^2)+frac{1}{24}5^4(4x^3h+6x^2h^2+4xh^3+h^4)...-}{h}$$
              $$implies lim_{h to 0} frac{hleft[-frac{1}{2}5^2(2x+h)+frac{1}{24}5^4(4x^3+6x^2h+4xh^2+h^3)...- right]}{h}$$
              $$implies lim_{h to 0}left[-frac{1}{2}5^2(2x+h)+frac{1}{24}5^4(4x^3+6x^2h+4xh^2+h^3)-... right]$$
              $$implies -5left[frac{1}{2}5(2x)-frac{1}{24}5^3(4x^3)+... right] $$
              $$implies -5left[(5x)-frac{1}{6}(5x)^3+... right] $$
              $$implies -5sin 5x$$






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                $$lim_{hrightarrow0}dfrac{f(x+h)-f(x)}{h}$$
                $$implies lim_{h to 0}frac{cos5(x+h)-cos5(x)}{h}$$
                $$implies lim_{h to 0} frac{left(1-frac{1}{2}5^2(x+h)^2+frac{1}{24}5^4(x+h)^4-.... right)-left((1-frac{1}{2}5^2(x)^2+frac{1}{24}5^4(x)^4-.... right)}{h}$$



                $$implies lim_{h to 0}frac{-frac{1}{2}5^2(2xh+h^2)+frac{1}{24}5^4(4x^3h+6x^2h^2+4xh^3+h^4)...-}{h}$$
                $$implies lim_{h to 0} frac{hleft[-frac{1}{2}5^2(2x+h)+frac{1}{24}5^4(4x^3+6x^2h+4xh^2+h^3)...- right]}{h}$$
                $$implies lim_{h to 0}left[-frac{1}{2}5^2(2x+h)+frac{1}{24}5^4(4x^3+6x^2h+4xh^2+h^3)-... right]$$
                $$implies -5left[frac{1}{2}5(2x)-frac{1}{24}5^3(4x^3)+... right] $$
                $$implies -5left[(5x)-frac{1}{6}(5x)^3+... right] $$
                $$implies -5sin 5x$$






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  $$lim_{hrightarrow0}dfrac{f(x+h)-f(x)}{h}$$
                  $$implies lim_{h to 0}frac{cos5(x+h)-cos5(x)}{h}$$
                  $$implies lim_{h to 0} frac{left(1-frac{1}{2}5^2(x+h)^2+frac{1}{24}5^4(x+h)^4-.... right)-left((1-frac{1}{2}5^2(x)^2+frac{1}{24}5^4(x)^4-.... right)}{h}$$



                  $$implies lim_{h to 0}frac{-frac{1}{2}5^2(2xh+h^2)+frac{1}{24}5^4(4x^3h+6x^2h^2+4xh^3+h^4)...-}{h}$$
                  $$implies lim_{h to 0} frac{hleft[-frac{1}{2}5^2(2x+h)+frac{1}{24}5^4(4x^3+6x^2h+4xh^2+h^3)...- right]}{h}$$
                  $$implies lim_{h to 0}left[-frac{1}{2}5^2(2x+h)+frac{1}{24}5^4(4x^3+6x^2h+4xh^2+h^3)-... right]$$
                  $$implies -5left[frac{1}{2}5(2x)-frac{1}{24}5^3(4x^3)+... right] $$
                  $$implies -5left[(5x)-frac{1}{6}(5x)^3+... right] $$
                  $$implies -5sin 5x$$






                  share|cite|improve this answer









                  $endgroup$



                  $$lim_{hrightarrow0}dfrac{f(x+h)-f(x)}{h}$$
                  $$implies lim_{h to 0}frac{cos5(x+h)-cos5(x)}{h}$$
                  $$implies lim_{h to 0} frac{left(1-frac{1}{2}5^2(x+h)^2+frac{1}{24}5^4(x+h)^4-.... right)-left((1-frac{1}{2}5^2(x)^2+frac{1}{24}5^4(x)^4-.... right)}{h}$$



                  $$implies lim_{h to 0}frac{-frac{1}{2}5^2(2xh+h^2)+frac{1}{24}5^4(4x^3h+6x^2h^2+4xh^3+h^4)...-}{h}$$
                  $$implies lim_{h to 0} frac{hleft[-frac{1}{2}5^2(2x+h)+frac{1}{24}5^4(4x^3+6x^2h+4xh^2+h^3)...- right]}{h}$$
                  $$implies lim_{h to 0}left[-frac{1}{2}5^2(2x+h)+frac{1}{24}5^4(4x^3+6x^2h+4xh^2+h^3)-... right]$$
                  $$implies -5left[frac{1}{2}5(2x)-frac{1}{24}5^3(4x^3)+... right] $$
                  $$implies -5left[(5x)-frac{1}{6}(5x)^3+... right] $$
                  $$implies -5sin 5x$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 6 at 13:22









                  Rakibul Islam PrinceRakibul Islam Prince

                  1,010211




                  1,010211






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063816%2fhow-to-find-the-derivative-of-cos-5x-using-first-principle%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      1300-talet

                      1300-talet

                      Display a custom attribute below product name in the front-end Magento 1.9.3.8