How to find the derivative of $cos 5x$ using first principle
$begingroup$
So my textbook solution uses some discrete method to arrive at -5sinx 5x. But I want to know a simpler technique to get the solution. Can anyone post?
derivatives implicit-differentiation
$endgroup$
add a comment |
$begingroup$
So my textbook solution uses some discrete method to arrive at -5sinx 5x. But I want to know a simpler technique to get the solution. Can anyone post?
derivatives implicit-differentiation
$endgroup$
$begingroup$
It is rather hard to tell what you are actually after. Do you want an in depth formal proof or just a different pre-packed technique? Also we do not know what method your textbook is using. Can you clarify?
$endgroup$
– String
Jan 6 at 13:13
add a comment |
$begingroup$
So my textbook solution uses some discrete method to arrive at -5sinx 5x. But I want to know a simpler technique to get the solution. Can anyone post?
derivatives implicit-differentiation
$endgroup$
So my textbook solution uses some discrete method to arrive at -5sinx 5x. But I want to know a simpler technique to get the solution. Can anyone post?
derivatives implicit-differentiation
derivatives implicit-differentiation
asked Jan 6 at 12:46
Shaikh SakibShaikh Sakib
195
195
$begingroup$
It is rather hard to tell what you are actually after. Do you want an in depth formal proof or just a different pre-packed technique? Also we do not know what method your textbook is using. Can you clarify?
$endgroup$
– String
Jan 6 at 13:13
add a comment |
$begingroup$
It is rather hard to tell what you are actually after. Do you want an in depth formal proof or just a different pre-packed technique? Also we do not know what method your textbook is using. Can you clarify?
$endgroup$
– String
Jan 6 at 13:13
$begingroup$
It is rather hard to tell what you are actually after. Do you want an in depth formal proof or just a different pre-packed technique? Also we do not know what method your textbook is using. Can you clarify?
$endgroup$
– String
Jan 6 at 13:13
$begingroup$
It is rather hard to tell what you are actually after. Do you want an in depth formal proof or just a different pre-packed technique? Also we do not know what method your textbook is using. Can you clarify?
$endgroup$
– String
Jan 6 at 13:13
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
By the definition of a derivative, you have
$$f’(x) = lim_{h to 0}frac{f(x+h)-f(x)}{h}$$
So using $f(x) = cos(5x)$, you get
$$lim_{h to 0}frac{cos(5x+h)-cos(5x)}{h}$$
To get you started, you need to know:
- $$cos(alpha+beta) = cos (alpha)cos (beta)-sin (alpha)sin (beta)$$
- $$color{blue}{lim_{x to 0} frac{sin(x)}{x} = 1}$$
- $$lim_{x to 0}frac{cos(x)-1}{x} = 0$$
For the limit highlighted in blue, you need a simple manipulation since you get a limit in the form $lim_limits{x to 0}frac{sin(nx)}{x}$. Can you take it on from here?
$endgroup$
add a comment |
$begingroup$
$$lim_{hrightarrow0}dfrac{f(x+h)-f(x)}{h}$$
$$implies lim_{h to 0}frac{cos5(x+h)-cos5(x)}{h}$$
$$implies lim_{h to 0} frac{left(1-frac{1}{2}5^2(x+h)^2+frac{1}{24}5^4(x+h)^4-.... right)-left((1-frac{1}{2}5^2(x)^2+frac{1}{24}5^4(x)^4-.... right)}{h}$$
$$implies lim_{h to 0}frac{-frac{1}{2}5^2(2xh+h^2)+frac{1}{24}5^4(4x^3h+6x^2h^2+4xh^3+h^4)...-}{h}$$
$$implies lim_{h to 0} frac{hleft[-frac{1}{2}5^2(2x+h)+frac{1}{24}5^4(4x^3+6x^2h+4xh^2+h^3)...- right]}{h}$$
$$implies lim_{h to 0}left[-frac{1}{2}5^2(2x+h)+frac{1}{24}5^4(4x^3+6x^2h+4xh^2+h^3)-... right]$$
$$implies -5left[frac{1}{2}5(2x)-frac{1}{24}5^3(4x^3)+... right] $$
$$implies -5left[(5x)-frac{1}{6}(5x)^3+... right] $$
$$implies -5sin 5x$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063816%2fhow-to-find-the-derivative-of-cos-5x-using-first-principle%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
By the definition of a derivative, you have
$$f’(x) = lim_{h to 0}frac{f(x+h)-f(x)}{h}$$
So using $f(x) = cos(5x)$, you get
$$lim_{h to 0}frac{cos(5x+h)-cos(5x)}{h}$$
To get you started, you need to know:
- $$cos(alpha+beta) = cos (alpha)cos (beta)-sin (alpha)sin (beta)$$
- $$color{blue}{lim_{x to 0} frac{sin(x)}{x} = 1}$$
- $$lim_{x to 0}frac{cos(x)-1}{x} = 0$$
For the limit highlighted in blue, you need a simple manipulation since you get a limit in the form $lim_limits{x to 0}frac{sin(nx)}{x}$. Can you take it on from here?
$endgroup$
add a comment |
$begingroup$
By the definition of a derivative, you have
$$f’(x) = lim_{h to 0}frac{f(x+h)-f(x)}{h}$$
So using $f(x) = cos(5x)$, you get
$$lim_{h to 0}frac{cos(5x+h)-cos(5x)}{h}$$
To get you started, you need to know:
- $$cos(alpha+beta) = cos (alpha)cos (beta)-sin (alpha)sin (beta)$$
- $$color{blue}{lim_{x to 0} frac{sin(x)}{x} = 1}$$
- $$lim_{x to 0}frac{cos(x)-1}{x} = 0$$
For the limit highlighted in blue, you need a simple manipulation since you get a limit in the form $lim_limits{x to 0}frac{sin(nx)}{x}$. Can you take it on from here?
$endgroup$
add a comment |
$begingroup$
By the definition of a derivative, you have
$$f’(x) = lim_{h to 0}frac{f(x+h)-f(x)}{h}$$
So using $f(x) = cos(5x)$, you get
$$lim_{h to 0}frac{cos(5x+h)-cos(5x)}{h}$$
To get you started, you need to know:
- $$cos(alpha+beta) = cos (alpha)cos (beta)-sin (alpha)sin (beta)$$
- $$color{blue}{lim_{x to 0} frac{sin(x)}{x} = 1}$$
- $$lim_{x to 0}frac{cos(x)-1}{x} = 0$$
For the limit highlighted in blue, you need a simple manipulation since you get a limit in the form $lim_limits{x to 0}frac{sin(nx)}{x}$. Can you take it on from here?
$endgroup$
By the definition of a derivative, you have
$$f’(x) = lim_{h to 0}frac{f(x+h)-f(x)}{h}$$
So using $f(x) = cos(5x)$, you get
$$lim_{h to 0}frac{cos(5x+h)-cos(5x)}{h}$$
To get you started, you need to know:
- $$cos(alpha+beta) = cos (alpha)cos (beta)-sin (alpha)sin (beta)$$
- $$color{blue}{lim_{x to 0} frac{sin(x)}{x} = 1}$$
- $$lim_{x to 0}frac{cos(x)-1}{x} = 0$$
For the limit highlighted in blue, you need a simple manipulation since you get a limit in the form $lim_limits{x to 0}frac{sin(nx)}{x}$. Can you take it on from here?
answered Jan 6 at 12:56
KM101KM101
5,9661523
5,9661523
add a comment |
add a comment |
$begingroup$
$$lim_{hrightarrow0}dfrac{f(x+h)-f(x)}{h}$$
$$implies lim_{h to 0}frac{cos5(x+h)-cos5(x)}{h}$$
$$implies lim_{h to 0} frac{left(1-frac{1}{2}5^2(x+h)^2+frac{1}{24}5^4(x+h)^4-.... right)-left((1-frac{1}{2}5^2(x)^2+frac{1}{24}5^4(x)^4-.... right)}{h}$$
$$implies lim_{h to 0}frac{-frac{1}{2}5^2(2xh+h^2)+frac{1}{24}5^4(4x^3h+6x^2h^2+4xh^3+h^4)...-}{h}$$
$$implies lim_{h to 0} frac{hleft[-frac{1}{2}5^2(2x+h)+frac{1}{24}5^4(4x^3+6x^2h+4xh^2+h^3)...- right]}{h}$$
$$implies lim_{h to 0}left[-frac{1}{2}5^2(2x+h)+frac{1}{24}5^4(4x^3+6x^2h+4xh^2+h^3)-... right]$$
$$implies -5left[frac{1}{2}5(2x)-frac{1}{24}5^3(4x^3)+... right] $$
$$implies -5left[(5x)-frac{1}{6}(5x)^3+... right] $$
$$implies -5sin 5x$$
$endgroup$
add a comment |
$begingroup$
$$lim_{hrightarrow0}dfrac{f(x+h)-f(x)}{h}$$
$$implies lim_{h to 0}frac{cos5(x+h)-cos5(x)}{h}$$
$$implies lim_{h to 0} frac{left(1-frac{1}{2}5^2(x+h)^2+frac{1}{24}5^4(x+h)^4-.... right)-left((1-frac{1}{2}5^2(x)^2+frac{1}{24}5^4(x)^4-.... right)}{h}$$
$$implies lim_{h to 0}frac{-frac{1}{2}5^2(2xh+h^2)+frac{1}{24}5^4(4x^3h+6x^2h^2+4xh^3+h^4)...-}{h}$$
$$implies lim_{h to 0} frac{hleft[-frac{1}{2}5^2(2x+h)+frac{1}{24}5^4(4x^3+6x^2h+4xh^2+h^3)...- right]}{h}$$
$$implies lim_{h to 0}left[-frac{1}{2}5^2(2x+h)+frac{1}{24}5^4(4x^3+6x^2h+4xh^2+h^3)-... right]$$
$$implies -5left[frac{1}{2}5(2x)-frac{1}{24}5^3(4x^3)+... right] $$
$$implies -5left[(5x)-frac{1}{6}(5x)^3+... right] $$
$$implies -5sin 5x$$
$endgroup$
add a comment |
$begingroup$
$$lim_{hrightarrow0}dfrac{f(x+h)-f(x)}{h}$$
$$implies lim_{h to 0}frac{cos5(x+h)-cos5(x)}{h}$$
$$implies lim_{h to 0} frac{left(1-frac{1}{2}5^2(x+h)^2+frac{1}{24}5^4(x+h)^4-.... right)-left((1-frac{1}{2}5^2(x)^2+frac{1}{24}5^4(x)^4-.... right)}{h}$$
$$implies lim_{h to 0}frac{-frac{1}{2}5^2(2xh+h^2)+frac{1}{24}5^4(4x^3h+6x^2h^2+4xh^3+h^4)...-}{h}$$
$$implies lim_{h to 0} frac{hleft[-frac{1}{2}5^2(2x+h)+frac{1}{24}5^4(4x^3+6x^2h+4xh^2+h^3)...- right]}{h}$$
$$implies lim_{h to 0}left[-frac{1}{2}5^2(2x+h)+frac{1}{24}5^4(4x^3+6x^2h+4xh^2+h^3)-... right]$$
$$implies -5left[frac{1}{2}5(2x)-frac{1}{24}5^3(4x^3)+... right] $$
$$implies -5left[(5x)-frac{1}{6}(5x)^3+... right] $$
$$implies -5sin 5x$$
$endgroup$
$$lim_{hrightarrow0}dfrac{f(x+h)-f(x)}{h}$$
$$implies lim_{h to 0}frac{cos5(x+h)-cos5(x)}{h}$$
$$implies lim_{h to 0} frac{left(1-frac{1}{2}5^2(x+h)^2+frac{1}{24}5^4(x+h)^4-.... right)-left((1-frac{1}{2}5^2(x)^2+frac{1}{24}5^4(x)^4-.... right)}{h}$$
$$implies lim_{h to 0}frac{-frac{1}{2}5^2(2xh+h^2)+frac{1}{24}5^4(4x^3h+6x^2h^2+4xh^3+h^4)...-}{h}$$
$$implies lim_{h to 0} frac{hleft[-frac{1}{2}5^2(2x+h)+frac{1}{24}5^4(4x^3+6x^2h+4xh^2+h^3)...- right]}{h}$$
$$implies lim_{h to 0}left[-frac{1}{2}5^2(2x+h)+frac{1}{24}5^4(4x^3+6x^2h+4xh^2+h^3)-... right]$$
$$implies -5left[frac{1}{2}5(2x)-frac{1}{24}5^3(4x^3)+... right] $$
$$implies -5left[(5x)-frac{1}{6}(5x)^3+... right] $$
$$implies -5sin 5x$$
answered Jan 6 at 13:22
Rakibul Islam PrinceRakibul Islam Prince
1,010211
1,010211
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063816%2fhow-to-find-the-derivative-of-cos-5x-using-first-principle%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
It is rather hard to tell what you are actually after. Do you want an in depth formal proof or just a different pre-packed technique? Also we do not know what method your textbook is using. Can you clarify?
$endgroup$
– String
Jan 6 at 13:13